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Abstract— In this paper, the problem of end-to-end weighted
max-min fair rate assignment in a two-channel multi-hop CDMA
wireless access network is discussed. We show that end-to-
end weighted global max-min fairness (hierarchical as well as
flow-based) can be achieved by simple extension of mac-layer
fairness. In particular, we show that weighted end-to-end flow-
based as well as hierarchical global max-min fairness can be
simply insured if and only if weighted mac-layer max-min and
weighted transport-layer max-min fair rates are achieved. The
same results can easily be shown to be valid for more general
wireless networks, which will be briefly discussed in this paper
as well.

In addition, we discuss a mac-layer algorithm, MAC − α −
G algorithm, that, with careful choice of parameters, not only
provides weighted α-proportional fairness at the mac layer, but
also leads to end-to-end weighted global max-min fairness (both
flow-based and hierarchical) with an appropriate higher-layer
protocol (i.e. weighted transport-layer max-min fair protocol).

Keywords: System Design, End-to-End Global and Mac layer
Max-Min Fairness, Alpha-Proportional Fairness.

I. INTRODUCTION AND RELATED WORK

Multi-hop wireless access networks, with their easy and
cost effective deployment and reconfigurability features are
getting attention for many potential applications as the last
mile solution. The potential applications of multi-hop wireless
access networks include public safety, military and community
access networks. In community network projects, a high
capacity gateway providing internet connection is located in
the neighborhood and the residents are able to reach internet
over a multi-hop wireless access network. Similarly, in public
safety and military applications, in order to cooperate and
coordinate the operations, the first responders and military
personnel use wireless access networks.

Multi-hop wireless access mesh networking technology is
still to overcome many important challenges to be widely
deployed. These challenges range from range and capacity
limitation of the wireless links to secure and fair resource
allocation. These issues are being addressed and studied by
researchers both at industry [11], [12] and academia [15], [13].

Furthermore, leveraging high statistical multiplexing gains
in a residential environment, multi-hop wireless and wired ac-
cess networks are recently introduced for peer-to-peer resource
sharing to Internet access such that each individual is able to
utilize the fair amount of the peak bandwidth available to the
entire community (e.g. neighborhood) [12]. For example, each
resident having a broadband access (i.e. DSL) is able to utilize

not only his/her own connection bandwidth but also those
of his/her neighbors connections over a multihop wireless or
wired access network [12].

In [15], authors propose a multi-hop wireless mesh archi-
tecture using 802.11 protocol utilizing two wireless cards on
each node in the network. In contrast in this paper, we focus
on multi-hop CDMA or UWB based wireless access networks.
Via power/interference management, we seek to provide fair
rate assignment over wireless (multi-access) channels. The
literature on mac-layer fairness is rich (see [14], [17], [16], [9],
[10], [7]). While [14], [17], [16], [9], [10]) address the fairness
issues at the mac layer over a single-hop network, [9] extends
this to multi-hop scenario ignoring flow-based end-to-end
fairness. Our paper complements these works as it concretizes
the relationship between mac-layer fairness and end-to-end
fairness. Furthermore, [7] discusses joint rate control and
scheduling problem, and [8] examines joint congestion and
medium access control both for multi-hop wireless networks
in the context of aggregate utility maximization. In both
papers, joint problem is shown to be decomposed into two
protocol layers and can be solved individually. Our work, on
the other hand, specifically discusses that global max-min fair
rate assignment problem (via joint transport rate and mac-layer
control) decomposes such that it can be solved as independent
fair rate assignment problems in each layer.

The main contributions of this paper can be summarized as
follows:

End-to-end (flow-based and hierarchical) global weighted
max-min fairness can be achieved if and only if both weighted
transport-layer and weighted mac-layer max-min fairness are
ensured with appropriate weights. (The weights for each link
for mac-layer fairness is a function of the weights associated
to each flow.)

The remainder of this paper is organized in the following
manner: In section 2, the network model is discussed. Section
3 discusses the rate assignment problem and provides the main
result of the paper on mac layer vs. end-to-end fairness. In
section 4, a weighted mac-layer fair algorithm is discussed.
Section 5 includes discussions and examples. Finally, Section
6 concludes the paper.

II. NETWORK MODEL

In this section, we mainly describe 2-channel CDMA type
network model for which the main results of the paper is
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presented. Furthermore, briefly, we discuss a general single-
channel network model for which the main results of the paper
still apply.

A. Network Model 1

We consider a multi-hop access network which is formed
by wireless client devices and the Access Points (APs). Each
client associates to one of the APs and APs form a mesh
network together. There is also a gateway access point which
provides internet connectivity. The clients are able to com-
municate with each other and access the internet through this
access network. We consider a Infrastructure Basic Service Set
(IBSS) type architecture which is comprised of an AP and the
client devices that associate to that AP. Clients are not able
to communicate with each other over a direct link. They first
need to send the information to the AP that they associate as
in the case of 802.11 IBSS.

Each node in the network (APs and clients) is able to utilize
a single transmitter and a receiver. Both transmitter and the
receiver can be tuned to 2 non-overlapping channels. Thus
each node is assumed to transmit and receive simultaneously
over these 2 non-overlapping channels where the inter-channel
interference is neglected (Figure 1). The logical connections
between a node and its AP or between two adjacent APs is
called a link. Let L = L1

⋃
L2 denote the set of directional

links in the network where L1 and L2 are the set of links
tuned to channel 1 and 2 respectively. Any link l ∈ L can
also be represented by the transmitter node i and the receiver
node j such that l = (i, j). As the case with CDMA networks,
each link is given a code. In other words, the links tuned to
the same channel have the ability to be active simultaneously.

In this paper, we assume that all nodes in the network are
able to hear each other.

Each AP is considered to be a wireless bridge such that the
packets are forwarded in layer 2 throughout the entire access
network. Spanning tree protocol is used [4] to form a loop free
topology where the learning bridge algorithm works well [4].
There are many recent papers considering loop free topologies
[15] for multi-hop access networks.

In this work, we also consider the capacity of each wireless
link as a linear function of the related signal to interference
noise ratio (SINR)(e.g. low signal to noise ratio regime).

Xi,j = B
Pi,jGi,j∑

m,n�=i,j Pm,nGm,j + γ
(1)

where Xi,j is the capacity of link i, j and i and j are the end
nodes of the link. B is the bandwidth allocated for the related
channel, Pi,j is the power transmitted on link i, j and Gi,j

is the attenuation constant such that Pi,jGi,j is the received
power at the receiving end of link i, j. γ is the ambient noise.

Each link i, j has a power budget such that

0 ≤ Pi,j ≤ Pmaxi,j (2)

On the other hand, a flow is defined to be a logical
connection between any mobile client device and the gateway,

or between any two mobile client devices. Let F denote the
set of all flows in the network. We assume that routing is given
by a fixed matrix Ψ = [Ψp,l]|F |×|L|, Ψp,l = 1 if p ∈ Fl=(i,j)

otherwise it is 0 where Fi,j denotes the set of flows traversing
link (i, j). In this paper, due to the loop free nature of the
topology it is indeed a fact rather than an assumption.

The rate of flow p, Rp, is the information rate that the related
source node conveys to the destination node.

The rate of link l = (i, j) should be greater than or equal
to the aggregate rate of flows that are traversing the link such
that

Ti,j =
∑

p∈Fi,j

Rp ≤ Xi,j , Rp ≥ 0 ∀p ∈ F (3)

We assume a transport layer protocol, given the link rates,
that assigns the rates among the end-to-end flows. It is assumed
that each flow has infinite demand. Independent of the end-to-
end flow rates, we also assume a mac-layer protocol that sets
the link capacities with respect to the equation 1.

B. Network Model 2

In this model, we assume a multi-hop wireless access
network where still each node is able to hear each other. In
other words, each link interfere with all other links in the
access network. There exist a single channel that is used by
all the links in the network. Routing or bridging or any other
path setup mechanism is assumed. The capacity of each link
l = (i, j), Xl=(i,j), is assumed to be a strictly increasing
function of the average transmitted power ATPi,j which is
equal to Pi,j × Si,j where Si,j is roughly the frequency of
the link i, j being used. The notion of average transmitted
power can describe perfectly scheduled networks as in [6] or
any other mechanism like 802.11 or a CDMA type multi-hop
network. On the other hand, the link rate Xi,j is assumed to
be a strictly decreasing function of the average transmitted
powers of all other links (e.g. ATPm,n ∀ (m,n) �= (i, j)).

The feasibility region for flow rates is the same as in
network model 1.

III. RATE ASSIGNMENT PROBLEM

In this section, end-to-end global (flow based as well as
hierarchical) and mac-layer rate assignment policies and the
relationship between them are discussed.

A. Definitions

First, we introduce the following definitions.
Definition 1: A vector of rates R is weighted max-min

fair with weight vector W ,if it is feasible and for each flow i,
the rate of flow i, Ri, can not be increased while maintaining
feasibility without decreasing Rj for some flow j for which
RjWj ≤ RiWi. As a special case, for Wi = 1 ∀i, vector R
is said to be max-min fair [3].

Definition 2: A feasible vector of link rates, X is said to
be (weighted) mac-layer max-min fair if the link rate vector,
X , belongs to Y defined as:
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Y = {(.., Xi,j , ..) : Xi,j = B
Pi,jGi,j∑

m,n�=i,j Pm,nGm,j + γ
,

0 ≤ Pi,j ≤ Pmaxi,j} (4)

and is (weighted) max-min fair.
Definition 3: A vector of end-to-end flow rates, R, is said

to be (weighted) transport layer max-min fair, given fixed
routing matrix Ψ and link rate vector, X , if R belongs to VX

as defined:

VX = {(.., Rp, ..) :
∑

p∈Fi,j

Rp ≤ Xi,j ∀(i, j) ∈ L,

Rp ≥ 0 ∀p ∈ F} (5)

and is (weighted) max-min fair.
Definition 4: Given a routing matrix, Ψ, a vector of end-

to-end flow rates is said to be end-to-end global flow-based
max-min fair, if the flow rates are chosen from set S: S =⋃

∀X∈Y VX and is max-min fair.
Unlike the transport-layer fairness, in global fairness the

link rates are not assumed to be given. In our wireless access
network the capacity of a link is a function of the other link
capacities, therefore in order to enforce the global fairness we
need to compute both the link rates and the flow rates. A
numeric example is available in [1].

Definition 5: Given a feasible vector of flow rates, R, we
say that link l = (i, j) is a weighted bottleneck link with
weight vector W with respect to R for a flow p traversing
link l , if Ti,j = Xi,j and RpWp ≥ RqWq for all the flows q
traversing link l. If all the weights are equal to 1 then link l
is said to be a bottleneck link as in [3].

B. Weighted End-to-End Flow-Based Global Max-Min Fair-
ness: Main Result

In this section, we establish a relationship between mac-
layer and end-to-end global fair rate assignments in the dis-
cussed access network. We show weighted fairness at the mac-
layer and weighted max-min fairness in the transport layer
ensure end-to-end global weighted max-min fairness per flow,
vice versa. To prove this we need the following facts.

Fact 1: Weighted mac-layer max-min fair rate assignment in
our network with weight vector W and rate vector X assigns
the rates to each link tuned to the same channel such that
XlWl = XdWd ∀l, d ∈ Li : i = 1, 2. Proof can be found in
[1]. Note that as a special case mac-layer max-min fairness
(Wl = 1, ∀l) assigns the same rate to all the links [20].

Fact 2: A vector of link rates X is weighted mac-layer
max-min fair with weight vector W if it is achievable (i.e.
in the capacity region) and it is the maximal among vectors
E such that WlEl = WdEd for all ∀l, d ∈ Li : i = 1, 2.
(Similarly, El = Ed for max-min fair case.) (A vector, V , is
maximal when there is no other vector, D, of which elements
are not less than those of V and at least one is strictly greater).
Proof of this fact is a direct result of Fact1 and the definition
of (weighted) max-min fairness.

Fact 3: End-to-end flow-based global weighted max-min
fair rate assignment with weight vector W and flow rate vector
R assigns the flow rates such that RiWi = RjWj ∀i, j ∈
F . Note that if all the weights are the same then the rate
assignment in question assigns the same rates to each flow in
our access network. Also note that each flow in our network
utilizes both the channels. The proof is available in [1]. The
proof for all the weights equal to 1 has the same logic as in
[20].

Fact 4: If a feasible flow rate vector, R, is said to be end-
to-end global flow-based weighted max-min fair with weight
vector W then there exists a channel, i, such that with respect
to R, each flow has a weighted bottleneck link, l (with W ),
tuned to channel i and each such link l (i.e ∀l ∈ Li) is
a weighted bottleneck link (with W ) for some flow in the
network and the link rate vector of channel i is maximal. Proof
is available in [1].

Now we provide the main result of this section.
Let W be the weight vector with which R (the flow rate

vector) is end-to-end global flow-based weighted max-min fair.
Let N denote a vector such that

N = ((n1)−1, ..., (nl)−1, ...(n|Lb|)
−1) where nl =∑

f∈Fl=(i,j)
(Wf )−1 and Fi,j denotes the set of flows travers-

ing link (i, j) and |Lb| is the number of bottleneck links.
Theorem 1: In our access network, end-to-end flow-based

global weighted max-min fair rate allocation, R, with weight
vector W can be achieved if and only if transport-layer
weighted max-min fairness with weight vector W and the
weighted mac-layer max-min fairness with weight vector N
(among the resulting bottleneck links with respect to R) are
ensured.

Proof: We first show that end-to-end flow-based global
weighted max-min fairness with weight vector W leads to
weighted mac-layer max-min fairness with weight vector N
and transport-layer weighted max-min fairness with weight
vector W . Note that throughout the proof, the links discussed
are the weighted bottleneck links with weight vector W as
defined in Definition 5.

First, we can easily show that if a vector of flow rates, R
is end-to-end global flow-based weighted max-min fair with
W then it is also transport-layer weighted max-min fair with
W . The proof is so simple by contradiction. Assume that the
vector, R is global weighted max-min fair but not transport-
layer weighted max-min fair with the same weight vector.
Then there should exist a flow i, of which rate Ri can be
increased without decreasing Rj for some flow j for which
WiRi ≥ WjRj , which is also a contradiction to the end-to-end
global flow-based max-min fairness.

Next, by contradiction assume that the vector of end-to-end
flow rates, R, is both end-to-end global weighted max-min
fair and transport-layer weighted max-min fair with W but
the corresponding link capacity vector, X , is not weighted
max-min fair with weights N .

End-to-end global flow-based weighted max-min fair rate
assignment assigns rates to each flow inversely proportional
to their weights that is WqRq = WpRp = r ∀p, q ∈ F
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(see Fact3). In the presence of end-to-end weighted max-min
fairness, the resulting aggregate flow rate traversing link l =
(i, j), Tl, will be Tl =

∑
p∈Fl

Rp =
∑

p∈Fl
(Wp)−1r = r × nl.

Since we are discussing on the bottleneck links then Tl = Xl =

r × nl ∀l ∈ B.

It can easily be seen that the link capacities satisfy the
condition in Fact 2 for weighted fairness such that Xi,jNi,j =
Xa,bNa,b where Ni,j denotes the element of vector N corre-
sponding to link i, j.

However, by contradiction we have assumed that the vector
X is not weighted max-min fair with weight N , then according
to Fact 2, vector X can not be maximal, otherwise it would
be the weighted max-min fair rate.

Therefore, one can increase all the link rates in the network
and this increase can be easily mapped into an increase in
all the end-to-end flow rates which contradicts with the end-
to-end global weighted max-min fair rate assumption that we
had in the beginning. Thus, we have shown so far that if a
vector of flow rates is end-to-end flow-based global weighted
max-min fair with W then it is also transport-layer weighted
max-min fair with W and the corresponding vector of link
rates is weighted mac-layer max-min fair with weight vector
N .

Conversely, assume that the link rate vector X is weighted
max-min fair with weights N and assume transport layer
weighted max-min fairness with weight vector W , then all
the flow rates will be assigned inversely proportional to their
weights. By contradiction assume that the end-to-end flow
rate vector R is not weighted max-min fair with W globally.
Then we should be able to increase all the Ris without
decreasing any of them (since we know that end-to-end flow-
based global max-min fairness indeed assigns rates to all the
flows inversely proportional to the corresponding weights).
This actually requires an increase in all the link rates inversely
proportional to their link weights which contradicts with the
weighted mac-layer max-min fair assumption.

(This theorem is valid for both network model 1 and
network model 2.)

This result is interesting in the sense that there is small
interaction between the mac layer and the transport layer. The
only information that mac layer needs to know is the sum
of the inverse weights of the flows that are passing through
(For Wi = 1∀i, that is the max-min fair case, the only
information to be passed to the mac-layer is the number of
flows passing through). Then the weighted max-min mac-layer
scheme with appropriate weights and with a weighted max-
min fair transport protocol leads to a weighted fair flow rate
allocation in the end-to-end and global manner.

In the next section, we discuss hierarchical global weighted
max-min fairness which can be achieved by end-to-end flow-
based global weighted max-min fairness with appropriate
choice of the system parameters.

C. End-to-End Hierarchical Weighted Max-Min Fair Rate
Assignment

Although flow based weighted max-min fairness is the
classical way of studying the fairness problem, in real world
different fairness variations may appear.

Considering a community network application as in [12]
where each IBSS belongs to a resident, each resident partici-
pating the access network would like to have a fair share of the
overall bandwidth which is proportional to what they pay for
their internet access speed. In an access network where end-to-
end flow based weighted max-min fairness is enforced (with
all weights equal to 1), a resident utilizing higher number of
connections will have a higher share of the overall bandwidth
with respect to the ones having smaller number of connections.
Enforcing hierarchical fairness each resident is ensured to have
a fair share of the network bandwidth first and then within the
same IBSS the fairness among the flows can be enforced.

Therefore, in our network, one of the interesting fairness
criterion may be a hierarchical fairness such that fairness
is first ensured among the Infrastructure Basic Servive Sets
(IBSS) (i.e among the set of flows utilized by different IBSSs)
and then among the individual flows in the same IBSS.

Definition 6: Let Ma be the set of flows belonging to
subgroup a such that

⋃
a Ma = F and Ma

⋂
Mb = ∅

∀a, b : a �= b. Let D be the rate vector where the ath
element denotes the aggregate information rate of subgroup
a : Da =

∑
i∈Ma

Ri, and let Z be the corresponding weight
vector for the subgroups. Lastly, let Ha denote the vector of
rates of the individual flows belonging to Ma and Va denotes
the weight vector for the flows in Ma.

A vector of flow rates, R, is said to be weighted hierar-
chical max-min fair with a weight vector Z, and a vector
of vectors V = (V1, V2, ...VT ), where T is the number of
subgroups, if first the vector, D, is weighted max-min fair
with weight vector Z and the rate vector for flows in each
subgroup a, Ha, is weighted max-min fair with weight vector
Va.

More formally, a vector, R, is said to be weighted hi-
erarchical max-min fair with a weight vector Z, and a
vector of vectors V = (V1, V2, ...VT ), if it is feasible and
if for each flow, i ∈ Ma, the rate, Ri, can not be increased,
while maintaining feasibility without decreasing Rj for some
flow j ∈ Mb for which Vb,jRj ≤ Va,iRi when a = b and
ZbDb ≤ ZaDa when a �= b. When all the weights are all
equal to 1, the rate vector R is called Hierarchical Max-Min
fair as similarly defined in [13].

Fact 5: Using similar arguments for mac-layer and end-to-
end flow based max-min fair rate assignment policies, it can
be claimed that such a hierarchical fairness policy leads to the
aggregate flow rates for each IBSS such that ZaDa = ZbDb

∀a, b. Again using the same argument, we can claim that each
flow belonging to the same IBSS have rate as follows Va,iRi =
Va,jRj ∀a and ∀i ∈ Ma. Proof is available in [1].

Fact 6: A vector of flow rates, R is hierarchical weighted
max-min fair with Z and V as defined above, if it is achievable
(i.e. in the capacity region) and corresponding D vector is the
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maximal among vectors, E, such that ZaEa = ZbEb ∀a, b and
given the D vector, for each subgroup a, the related vector Ha

is the maximal among the vectors, Ba, such that Va,iB
a
i =

Va,jB
a
j ∀i, j ∈ Ma. (It is a direct result from the previous fact

on hierarchical fairness.)
Let Q be the weighted rate of each subgroup (e.g. resi-

dent) utilizes such that Q = ZaDa ∀a where the weighted
hierarchical fairness policy with Z and V is enforced. Then
the aggregate rate that the subgroup a utilizes will be Q

Za
,

whereas the rate of flow i, Ri in the same subgroup will be
Ri = Va,jRj

Va,i
∀i.

From the definition of Da,
Da =

∑
j∈Ma

Rj =
∑

i∈Ma

Va,jRj

Va,i
= Q

Za
.

Therefore, rate of each flow i ∈ Ma can be written as
Ri = Q

ZaVa,i(
∑

i
1

Va,i
)

Let s(i) denote the subgroup to which ith flow belongs and
let Ka,i = ZaVa,i(

∑
i

1
Va,i

).
Let W be the vector such that
W = ((Ks(1),1), (Ks(2),2), (Ks(3),3), ......(Ks(|F |),|F |))

where |F | is the number of all flows.
(Considering the above discussion, we can safely say that

any weighted hierarchical max-min fair vector of flow rates,
R, satisfies the condition RiWi = RjWj .)

Theorem 2: End-to-end hierarchical global weighted max-
min fairness with Z and V can be achieved if and only if
end-to-end flow-based global weighted max-min fairness with
weight vector W is ensured. Outline of the proof can be found
in [1].

Corollary: Using the results above and Theorem 1, it can
easily be seen that a vector of flow rates, R is said to be
hierarchical weighted max-min fair with Z and V , if and only
if transport layer weighted max-min fair with weight vector W
(as defined above) and weighted mac-layer max-min fairness
with weight vector N are achieved, where the lth element of
vector N , Nl, equals (

∑
f∈Fl

(Wf )−1)−1.
In the next section, we would like to propose a mac-layer

scheme that is able to achieve the weighted mac-layer max-
min fairness we are looking for.

IV. MAC-LAYER ALGORITHM ENSURING END-TO-END

GLOBAL AND MAC-LAYER FAIRNESS

In this section, we discuss a mac-layer algorithm that
enforces mac-layer weighted α-proportional and mac-layer
weighted max-min fair rate assignments.

As we discuss in the previous sections (i.e. Theorems 1
and 2) with appropriate weights, mac-layer weighted max-
min fair rate assignment results in link capacities such that
with appropriate higher layer mechanisms (i.e. (weighted)
max-min transport layer protocol), end-to-end (flow based and
hierarchical) max-min fairness is achieved globally. In addition
to this, considering Fact 4, that is, all the links tuned to a
single channel being the bottleneck links for all the flows in
the network, all we need to have is a mac-layer scheme that
ensures the weighted mac-layer fairness among the links tuned
to the same channel.

In this section, we begin with mac-layer weighted α-
proportional fair rate assignment. Next, we introduce a mac-
layer algorithm, MAC −α−G, which is a general mac-layer
algorithm where with appropriate choice of parameters α and
G, not only mac-layer α-proportional fairness but also end-
to-end max-min (flow based and hierarchical) fairness can be
achieved.

A. Mac-layer Weighted Max-Min Fair Rate Assignment (End-
to-End Global Fair Rate Assignment)

In this section, we discuss an approach to compute the
weighted max-min fair link rates in a distributed manner.

Definition 8: Similar to [19], we consider a generalization
of proportional fairness by considering a different utility
function for each entity. A vector of rates, R, is α-
proportional fair if it maximizes the sum of the utilities
when the utility function for entity i is −(−ln(Ri))α.

1) Weighted α-Proportional Fairness Approach:: The
overall optimization problem for weighted max-min fairness
is

Maximize
∑

i,j

U(Xi,j) =
∑

i,j

− 1

gi,j
(−ln(gi,jXi,j))

α (6)

Subject To: 0 ≤ Pi,j ≤ Pmax (7)

where Xi,j is defined in equation 1 and gi,j is a weight
associated to the link (i, j) to ensure the weighted fairness.

CLAIM: The system trying to maximize the aggregate
utility function U =

∑
i,j U(Xi,j) leads to weighted α-

Proportional fair rate assignment. Weights equal to 1 and
α = 1 corresponds to mac-layer proportional fair case whereas
as α goes to infinity the system converges to weighted max-
min fair rate assignment. The proof of this claim can be found
in [1].

The above problem is not a convex programming problem
(CPP). Using the change of variable Pa,b = eZa,b , the
problem can be converted into a CPP such that Yi,j = Zi,j +
ln(gi,jWGi,j) − ln(

∑
k(eZm,nG(m, j)) + γ) is a concave

function. (log-sum-exp function is a convex function [2] and an
affine composition of any such function is also convex [2]).
The constraint part stays also convex such as 0 ≤ eZa,b ≤
Pmax.

In addition to that 1
gi,j

(−Yi,j)α can be shown to be a convex
function of the logarithmic transmitted power strengths (e.g.
Zi,j = ln(Pi,j)) where 0 ≤ gi,jXi,j ≤ 1 and α ≥ 1. The
proof can be found in [1].

We use Gradient Projection method [5] to solve the above
optimization problem such that

Zn+1
i,j = [Zn

i,j + θn ∂U

∂Zi,j
]+ (8)

where n denotes the iteration number and U is the sum
of all utility functions and [f ]+ denotes projection on the set
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0 ≤ Pi,j ≤ Pmax
i,j ∀i which is equal to min(max(0, f), Pmax

i,j )
and

∂U

∂Za,b
= α(

1

ga,b
)(−ln(ga,bX(a, b)))α−1−

∑

k,l �=a,b

α
eZa,bGa,l∑

q,r �=k,l eZq,r Gq,l + γ
(

1

gk,l
)(−ln(gk,lXk,l))

α−1 (9)

fa,b = 1 −
∑

k,l �=a,b

eZa,bGa,l∑
q,r �=k,l eZq,r Gq,l + γ

(
ga,b

gk,l
)(

ln(gk,lXk,l)

ln(ga,bXa,b)
)α−1

(10)

we can say that the equation 9 becomes negative when
fa,b < 0 or vice versa.

The above iterative algorithm based on gradient projection
method corresponds to a distributed algorithm that targets
the weighted α-proportional fair rates (e.g. asymptotically
weighted max-min fair rates). Here we present a mac-layer
algorithm where the increase and decrease coefficients are
assumed to be small enough for convergence. The decision
whether to increase or decrease the power is based on the
gradient projection method. Having the coefficients small
enough, gradient projection method is shown to converge to
one of the stationary points (the point where the gradient is
zero) [5]. Here since the problem is a CPP it has only a single
stationary point.

As a feedback mechanism we assume that each link in the
network advertises its weight, gi,j , its current capacity and the
power it receives from all other links that it is able to hear.

Given any arbitrary initial power vector, P , at each itera-
tion n, each link (a,b) computes the value of fa,b(P )n and
increases its transmit power, Pn

k , if fa,b(P )n is positive or
decrease if it is negative.

The whole power control scheme which we call MAC-
α − G for link a, b can be written as follows.

MAC-α − G Algorithm
STEP1: Initially start with a random power dissipation at each link.

STEP2: At iteration n

IF fn
a,b > 0 (or a positive threshold) then

Increase Pa,b (e.g. P n+1
a,b = P n

a,b + β)

ELSE IF fn
a,b < 0 (or a negative threshold) then

Decrease Pa,b (e.g. P n+1
a,b = P n

a,b − q)

ELSE Do not change Pa,b ( e.g. P n+1
a,b = P n

a,b)

where β and q are appropriate constants.

As mentioned previously, the mac-layer algorithm (i.e
MAC-α − G) (providing mac-layer max-min fairness with
weight vector G) can be used with a weighted transport layer
protocol to ensure end to end global max-min fairness.

An alternative problem formulation and algorithm is dis-
cussed in [1].

V. DISCUSSIONS AND EXAMPLES

In this section, we consider a single gateway access network
where there are 3 Access Points and 5 client devices, as in
Figure 1.
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Fig. 1. First example network

The attenuation constant is modelled as Gi,j = d−n
i,j where

di,j is the distance between nodes i and j and n is assumed to
be 2. Link capacities presented are normalized between zero
and one unit of capacity.

We first consider the following scenario where each link
(l = (i, j)) is assumed to have infinite amount of traffic to
transmit from the transmitter node i to the receiver node j all
the time. Each of the links are assumed to run the MIMD-
α−G algorithm where all the weights and α are all equal to
1 (mac-layer fairness scenario).

The resulting rates of each link tuned to channel 1 are
illustrated as the value of α increases from 1 to 60 in Figures
2 and 3 respectively. As can be seen in the figures as the
value of α increases the capacities on each link converges to
the same value which is consistent with the max-min fair rate
assignment fact (i.e. Fact 1).

Next, we consider a traffic scenario where the wireless
clients number 1,2,3 and 5 has infinite traffic demand to the
outside world through the gateway node. Here the end-to-end
flow-based global max-min fair rate allocation and the end-to-
end hierarchical global fairness are examined.

Consider the end-to-end flow-based case: The link weight,
gl=(i,j) for a link l is as follows (1 over the number of
flows traversing): For Channel 1, g1 = 1; g2 = 1; g3 = 1;
g7 = 1; g8 = 1/4; and for Channel 2, g4 = 1/3; g5 = 1;.
Figure 4 and 5 show the MAC-α − G allocations for large
α (α = 60) such that link rates converge to the weighted
max-min fair rates in the mac layer with the weights given
above. The resulting link capacities are available in Figure 4
for channel 1 and in Figure 5 for channel 2 respectively. As can
be seen, the capacities assigned on each link is approximately
inversely proportional to the weights assigned to that link
(i.e. for channel 1 X=[0.0192,0.0196,0.0197,0.0216,0.0848]
and for channel 2 X=[0.0992,0.0317]) which is consistent with
Fact1. In this case, channel 1 includes the bottleneck links
which assigns lower rate (0.02 unit capacity) to a single flow
than channel 2 does (0.03 unit capacity) in the presence of a
max-min fair transport protocol.
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Here we see the need for hierarchical fairness. If such a
network is deployed in a community network where each AP
is located in a residence, then flow based max-min fair rate
assignment assigns to residence 1, 3 times the bandwidth (0.06
unit capacity) it assigns to residence 3 (0.02 unit capacity).
This is not desirable for such applications.

Instead, hierarchical fairness model can be more appropriate
to consider, where each residence or AP has the fair share of
the network capacity.

In the case of hierarchical max-min fair rate assignment,
we have the following link weights. For Channel 1, g1 = 3;
g2 = 3; g3 = 3; g7 = 1; g8 = 1/2. For Channel 2, g4 = 1;
g5 = 1; In Figures 6 and 7 the corresponding rates for links
tuned to channel 1 and channel 2 are available respectively.
Each IBSS (or AP) is given around 0.0450 unit capacity, where
each flow of IBSS1 (or AP1) gets around 0.0150 unit capacity
while single flow of IBSS3 (or AP3) gets 0.0450 unit capacity
by itself. Channel 1 has all the weighted bottleneck links also
in this case, whereas channel 2 offers slightly higher link rates
(i.e. for channel 1 X=[0.0153,0.0147,0.0148,0.0477,0.0938]
and for channel 2 X=[0.0544,0.0545]).
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Fig. 2. Capacity, mac layer, alpha =1, channel 1
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Fig. 3. Capacity, mac layer, alpha = 60, channel 1

In the next example, the flow rate vector, R, is required
to be weighted hierarchical max-min fair with weight vectors
Z = [2, 3] and V1 = [1, 2, 3]. V2 can take any value since
there is only one flow in that residence. Using Theorem 2, R
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Fig. 4. Capacity, e2e flow based, alpha =60, channel 1
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Fig. 5. Capacity, e2e flow based, alpha = 60, channel 2

is also end-to-end weighted max-min fair with weight vector
W which is equal to W = [11/3, 22/3, 11, 3]. Consider-
ing theorem 1, the link rate vector, X , is weighted mac-
layer max-min fair with weight vector N . In this example,
N = [11/3, 22/3, 11, 3, 6/5] for the links tuned to channel
1 and N = [2, 3] for the links tuned to channel 2. Figures
8 and 9 indicate the resulting rates of each link tuned to
channel 1 and 2 respectively (when each link run the MAC-
α − G algorithm). The link rate vector, X , turns out to be
X = [0.0288, 0.0144, 0.0096, 0.0379, 0.0908] for the links on
channel 1 and X = [0.0652, 0.0412] for the links on channel
2. Assuming a weighted transport layer max-min fair protocol
with weight vector W , the links on channel 1 becomes the bot-
tleneck link as described in Fact 4. Then the flow rate vector R
becomes R = [0.0288, 0.0144, 0.0096, 0.0379]. Furthermore,
the rate vector, D, denoting the aggregate rate utilized by each
IBSS (or residence) becomes D = [0.0528, 0.0379]. As can
be seen the elements of both vectors X , D and R are almost
inversely proportional to the elements of the vectors N , Z and
W respectively as stated in Facts 1, 3 and 5.

As can be seen in these examples, using appropriate
transport layer (weighted max-min) protocols and the mac-
layer (weighted max-min) protocols, fair resource allocation
(weighted max-min fair) can be ensured globally not only
among individual flows but also among the residents that may
utilize several number of flows.
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Fig. 6. Capacity, hierarchical, alpha = 60, channel 1
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Fig. 7. Capacity, hierarchical, alpha = 60, channel 2

VI. CONCLUSIONS

In this paper, we show that in our wireless access network,
end-to-end global fairness can be achieved via enforcing
weighted mac-layer fairness. Particularly, we show that end-
to-end global (flow-based and hierarchical) weighted flow-
based max-min fairness is achieved if and only if transport-
layer weighted max-min and weighted mac-layer max-min
fair rate assignments are ensured. This result suggests that
by designing intelligent mac-layer schemes, one can ensure
end-to-end global fairness while requiring small interaction
among layers. Furthermore, we propose a mac-layer algorithm
to achieve weighted mac-layer fairness. Needless to say that
such mac-layer algorithms in conjunction with Theorem 1 and
2 can be used to achieve end-to-end global fairness.
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