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Abstract— We consider a system with a bursty and delay-
sensitive data source to be transmitted over a constant-rate
MIMO channel with no CSI information at the transmitter. Giv en
the diversity-multiplexing tradeoff region of the MIMO cha nnel,
we find the optimal multiplexing rate that optimizes the end-to-
end loss probability. Based on the effective bandwidth model of
the source, we present an analytical tradeoff between the error
probability over the MIMO channel and the probability of del ay
violation. We illustrate the optimal operating points for i .i.d.
sources and Markov-modulated sources and show the relation
between source burstiness, delay bound, and optimal multiplexing
rate.

I. I NTRODUCTION

Multiple antennas are an important means to improve the
performance of wireless systems. A MIMO system can provide
two types of gains: diversity gain and multiplexing gain.
Multiple antennas can be used to increase diversity to combat
channel fading and thus to decrease the probability of error.
Alternatively, multiple antennas can increase data rate by
taking advantage of different fading over the antennas to
multiplex independent data over these spatial channels. In[1],
it is shown that diversity gain and multiplexing gain can be
obtained simultaneously, but there is a tradeoff between the
two gains: higher multiplexing gain comes at the price of lower
diversity.

Our goal in this paper is to answer the question posed
by Holliday and Goldsmith in [2]: ”given the diversity-
multiplexing region, where should one choose to operate?”.
To answer this question, they consider a system consisting of
a source encoder concatenated with a MIMO channel encoder.
Their goal is to determine the optimal operating point on the
diversity-multiplexing region that minimizes the end-to-end
distortion due to both the source encoder and channel decoding
errors.

We answer the same question in a different context. We
consider a system with a bursty and delay-sensitive data
source, concatenated with an infinite buffer, followed by a
constant rate MIMO channel encoder (see Figure 1). Due to
the burstiness of the source, the arrival bits must be buffered
for transmission over the fixed rate MIMO channel. Any bits
out of the decoder which are delayed more than an acceptable
threshold is considered obsolete by the receiving application.
This is in addition to the error bits caused by the channel
decoder. Our goal is to find the optimal operating point on the
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Fig. 1. Joint queuing and MIMO system.

diversity-multiplexing region that minimizes the end-to-end bit
loss probability due to both the delay bound violation and the
MIMO channel decoding errors.

Our work, in spirit, is related to [3]. In [3], the authors
study the optimal (time-varying) encoding rate of a system
consisting of a delay-sensitive constant rate source over a
time-varying channel. The channel code is not assumed ideal.
The channel encoder receives data from the queue at a time-
varying rate and must encode the data at a rate matching
the instantaneous channel quality. If the queue chooses a
high instantaneous output rate, then the encoder must choose
channel codes with large rate, thus clearing the queue quickly,
but resulting in high decoding error probability. Their result
shows that the exponent of the optimal end-to-end bit loss
probability is the minimum of the delay bound violation
exponent and the coding error exponent. As we will see, we
arrive at similar results in the context of a time-varying source
with MIMO encoder which assumes no knowledge of the
MIMO channel and thus operates at a constant rate.

The paper is organized as follows. We begin in Section II
with a background on the diversity-multiplexing region for
MIMO channel and on the effective bandwidth. We formulate
our problem in Section III and provide problem analysis in
Section IV. The main result, the optimal operating point, is
shown in Section V. In section VI, we apply the technique
to three source models to illustrate their operating points. We
conclude in Section VII.

II. BACKGROUND

A. MIMO Channel Model

We use the same channel model as in [1]. We consider a
wireless link withM transmit andN receive antennas. The
fading coefficientshij that model the complex path gain from
transmit antennaj to receive antennai are i.i.d. complex
circular symmetric Guassian with unit variance. The channel



gain matrix H = [hij ] ∈ CN×M is assumed to be known
to the receiver but not at the transmitter. We assume that the
channel remains constant over a block ofT symbols, while
each block is i.i.d. Therefore, in each block we can represent
the channel as

Y =

√

ρ

M
HX + W, (1)

whereX ∈ CM×T and Y ∈ CN×T are the transmitted and
received signals, respectively;ρ is the average SNR at each
receive antenna; The additive noise vectorW is i.i.d. complex
Guassian with unit variance.

As in [1], a family of codes{C(ρ)} of block lengthT , one
codebook at each SNRρ level, can be constructed. Define
R(ρ) as the number of bits per symbol for the codebook and
Pe(ρ) as the average probability of error for the codebook. A
channel code scheme{C(ρ)} is said to achievemultiplexing
gain r anddiversity gain d if

lim
ρ→∞

R(ρ)

log ρ
= r (2)

and

lim
ρ→∞

log Pe(ρ)

log ρ
= −d. (3)

Similar to [1], we will use the special symbol
.
= to denote

exponentially equality, i.e. f(x)
.
= ebx as a shorthand for

limx→∞
log f(x)

x = b.
For eachr, define the optimal diversity gaind∗(r) as the

supremum of the diversity gain achieved by any scheme. The
main result of [1] is summarized in the following statement.

Diversity-Multiplexing Tradeoff [1]: Assume the block
length T ≥ M + N − 1. Then the optimal tradeoff between
diversity gain and multiplexing gain is a piecewise-linear
function d∗(r) = (M − r)(N − r), for 0 ≤ r ≤ min(M, N),
shown in Figure 2.

The diversity-multiplexing tradeoff is essentially the trade-
off between the error probability and the data rate of a system,
in the asymptotics of high SNR with fixed block length.

We assume without loss of generality that the rate of the
codebook isR(ρ) = rT log ρ bits per block. Also, we assume
that for any multiplexing gainr there is a codebook that
achieves the optimal diversity gaind∗(r).

B. Source Model and Effective Bandwidth

The source is modeled by a stochastic arrival stream{Xt},
whereXt indicates the number of bits arrived at time slott.
The arrived bits are queued at an infinite buffer and served
with a fixed rateC in first-come-first-served manner. Since
we are interested in real-time applications with strict delay
bounds, it is of an interest to study the queue delay statistics
and their dependence on the statistical characteristics of{Xt}.
In particular, we are interested in the tail probability of the
form P(Q ≥ B), whereQ is the steady-state queue length
andB is the maximum acceptable bound. The key result from
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Fig. 2. Diversity-multiplexing tradeoff,d∗(r) for generalm, n, andT ≥

m + n − 1.

effective bandwidth and large deviation literature (for example,
[4] and [7]) is that, in the asymptotic regime for largeB, the
tail probability decays exponentially withB. More precisely,

lim
B→∞

1

B
logP(Q ≥ B) ≤ −δ (4)

where the tail probability exponentδ is the solution to the
following equation:

α(δ) = C. (5)

The increasing functionα(s), s ≥ 0, is called effective
bandwidth and is fully determined by the process{Xt} (for
a formal discussion on effective bandwidth see [4] and the
references therein).1 In this paper we consider the following
two general source models:

1) I.I.D. Sources: Consider a source for which{Xt} are
i.i.d. random variables. The effective bandwidth is given by

α(δ) =
Λ(δ)

δ
(6)

where Λ(δ) := log E[eδXt ] is the log moment generating
function of Xt (for derivation of these results see [5]).

In Section VI, we will consider a compound Poisson process
as an example of this type of the sources.

2) Markov-Modulated Sources: The arrival stream{Xt} is
modulated by a discrete-time, finite-state, irreducible, station-
ary Markov chain{Ht} such that the distribution ofXt at time
time t depends only on the source stateHt at timet. Given a
realization of the chain{Ht}, the Xt’s are independent. The
source stateHt can be thought of as modeling the burstiness
of the stream at timet. The Markov structure models the
correlation in the arrival statistics over time [6]. It is shown
that Markov-modulated source also has an effective bandwidth
in the form of (6) butΛ(δ) is instead thelog spectral radius
function (see [6], [7], and [8]).2 In Section VI, we will consider
an on-off Poisson process as an example of Markov-modulated
sources.

Note that Markov-modulated source (with multiple time
scales) is often used to model MPEG video traffic [9].

1Note that the average and peak arrival rates areα(0) and α(∞),
respectively.

2In fact, the i.i.d. source is a degenerated case of Markov-modulated sources
where the Markov chain is degenerated to only one state.



III. PROBLEM FORMULATION

We begin by describing formally the system model. We
consider time-slotted system3 with Xt being the number of
bits generated at the source into an infinite buffer in time slot
t. The arrivals that are not immediately transmitted on the
outgoing channel are queued up in the buffer. Without loss of
generality, we assume a timeslot containsT symbols. Thus, a
timeslot matches with the codebook block size. At SNRρ and
multiplexing rater, the queue is served by a MIMO channel
encoder at a fixed rate (bits per timeslot) of

C = rT log ρ. (7)

We consider a bursty and delay-sensitive application where
any bits delayed more thanD timeslots are considered ob-
solete. The source process is modeled as a source with an
effective bandwidth ofα(s), defined for alls ≥ 0. Some
examples of the source processes are given in Section VI. We
assume that the average arrival rateα(0) is scaled withlog ρ,
i.e. we define a constantλ > 0 as the following:

λ :=
α(0)

T log ρ
. (8)

Moreover, we assume thatα(0) < C. In another word,
by (7) and (8), we assume the following condition on the
multiplexing rater:

r > λ. (9)

There are two causes of performance loss in the system:
Any obsolete bits out of the decoder are considered lost by the
receiving application. In addition, error bits due to decoding in
the MIMO channel are not retransmitted (i.e. no channel ARQ)
and considered lost as well. LetPq denote the probability of
bit loss due to delay bound violation,Pe the probability of
bit loss due to MIMO decoding errors, andPt the end-to-
end total bit loss probability that is perceived by the receiving
application. By union bound, we have

Pt ≤ Pq + Pe. (10)

Intuitively we expect thatPq is decreasing on the multi-
plexing rater because the higher rate the queue is served,
the less time the bits spend waiting in the queue. On the
other hand, from the diversity-multiplexing tradeoff of MIMO
coding,Pe is increasing onr. Therefore, we expect and will
show rigorously later that there is a tradeoff between thesetwo
types of loss in the system. Our objective is to find the optimal
multiplexing rater∗ that minimizes the total end-to-end loss
probability.

IV. PROBLEM ANALYSIS

First, we obtain an analytical relation of the error probability
due to MIMO channel,Pe, and the multiplexing rater. By the
diversity-multiplexing tradeoff for MIMO channel, we have
that the probability of the wholeT -symbol block in error is

3For simplicity of presentation. The concept in this paper works for
continuous system as well since the effective bandwidth holds there too.

ρ−d∗(r). Since a timeslot contains exactly one block, when
there is a decoding error, the data in the whole timeslot is in
error. Hence, the average probability of bit loss due to MIMO
channel is

Pe
.
= e−d∗(r) log ρ. (11)

Sinced∗(r) is decreasing on the multiplexing rater, it is clear
that Pe is increasing onr.

Next, we obtain an analytical relation of the error probability
due to delay bound violation,Pq, and the multiplexing rater.
Let Q be the steady-state queue length in the buffer. Since the
queue is served at the constant rateC bits per timeslot, we
defineB := DC be the queue length bound corresponding to
the delay boundD, i.e.

B = rDT log ρ. (12)

Consider a bit who sees ahead of itself an amount of work
greater thanB. Such a bit is guaranteed to be delayed by more
thanD timeslots; hence, it will be obsolete. On the other hand,
assuming a negligible propagation delay, such bits are the only
bits lost due to delay violations. In other words, the probability
of a bit becoming obsolete is nothing but the tail probability of
the steady-state queue length, i.e.Pq ≈ P(Q > B). Now we
use the effective bandwidth result (discussed in Section II.B),
as well as (5), (7), (8) and (12), to arrive at the following:

Pq
.
= e−δB = e−δrDT log ρ, (13)

whereδ is the solution to

α(δ) = rT log ρ =
rα(0)

λ
. (14)

Note that from (14) and the fact thatα(s) is increasing in
s, it is clear thatδ is increasing inr; hence,Pq is decreasing
in r. Now, by (11) and (13), we can rewrite the bound on the
total loss probability as

Pt ≤. e−δrDT log ρ + e−d∗(r) log ρ

= e−δrDT log ρ+o(log ρ) + e−d∗(r) log ρ+o(log ρ) (15)

as log ρ → ∞. The terms in (15) provide us with an explicit
characterization of the diversity-multiplexing tradeoffand its
impact on the total loss probability, quite similar to [2]. The
first term, corresponding to the delay bound violation, is
decreasing in the multiplexing rater, while the second term,
corresponding to the channel error probability, is increasing
with r. Hence, it is clear that there will be an optimal choice
of λ < r ≤ min(M, N).

V. M INIMIZING TOTAL LOSSPROBABILITY

A. Asymptotic Bound

To get analytical results for the optimal total loss probability
bound, we consider the asymptotic case whenρ → ∞. The
minimum of Pt happens when the exponent of the two terms
in (15) are withino(1) of each other (note that if the exponents
were not in the same order, one term would dominate in the



sum aslog ρ → ∞). In another word, the optimal multiplexing
rater∗ happens whenr∗ is the root of

α−1(
rα(0)

λ
)rDT = d∗(r) + o(1), (16)

where we substituteδ with α−1( rα(0)
λ ) by using (14). Notice

that the optimal bound depends on the statistical characteristics
of the source. This bound is illustrated in Figures 3 to 5 for
various data sources discussed in Section VI.

B. Non-Asymptotic Bound

For practical systems, the SNRρ is large but finite. If
we assume that the asymptotic tail probability and decoding
error probability hold for finite SNR, we can find the opti-
mal diversity-multiplexing tradeoff by solving the following
optimization problem:

min
λ<r≤min(M,N)

ρ−α−1( rα(0)
λ

)rDT + ρ−d∗(r) (17)

The above optimizations are illustrated in Figures 3 to 5 for
various data sources.

VI. EXAMPLES

A. I.I.D. Compound Poisson Sources

The arrival in a timeslot,Xt, is an aggregation of Poisson
packet arrivals with general length distribution, i.e.Xt =
∑N

n=1 Yn where Y1, Y2, . . . are i.i.d. random variables with
distribution G, and N is an independent Poisson random
variable with rateν packets per timeslot, then the effective
bandwidth is [4]

α(δ) =
ν

δ

∫

(eδx − 1)dG(x). (18)

The average bit arrivals per timeslot isν/µ which is dictated
by the source process, i.e.ν/µ = α(0).

Source I: Exponential-Length Poisson
Let Y1, Y2, . . . be exponentially distributed with mean1/µ,

then the effective bandwidth for this source is, by (18),

α(δ) =

{

ν
µ−δ if 0 ≤ δ < µ,

∞ if δ ≥ µ.

By using (14), and the fact thatα(0) = ν/µ, we obtain the
error exponentδ of the tail probability as following:

δ = µ(1 −
λ

r
). (19)

Note that (19) confirms that the tail probability exponentδ is
increasing inr.

Source II: Fixed-Length Poisson
Let the packet length be deterministic and of size1/µ, i.e.

Yn = 1/µ, ∀n. From (18) the effective bandwidth for this
source is

α(δ) =
ν(eδ/µ − 1)

δ
.
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Fig. 3. Source I: Total loss probability vs. multiplexing rate for D = 20, 100

B. Markov-Modulated Source

Source III : On-Off Exponential-Length Poisson
We consider a simple Markov modulated source: an on-

off Markov source whereHt ∈ {off, on}. When Ht is on,
arrivals {Xt} are generated by a compound Poisson stream
with exponential length at average rateν/µ. WhenHt is off,
there are no arrivals. Suppose the transition probability matrix

is

[

p 1 − p
1 − q q

]

, where 0 < p, q < 1, then the effective

bandwidth for this on-off Poisson source is ([6] and [7])

α(δ) =
1

δ
log

[

1

2
(a(δ) +

√

a2(δ) + 4b(δ))

]

where

a(δ) = p + q exp(
δν

µ − δ
),

b(δ) = (1 − p − q) exp(
δν

µ − δ
).

The average number of bit arrivals per timeslot is( 1−p
2−p−q ) ν

µ .

C. Results

Figures 3 to 5 show the the total loss probabilityPt vs. the
multiplexing rater for different levels of SNRρ for Sources
I-III, respectively. The vertical dashed lines show the optimal
r∗ obtained from the asymptotic case (16). For each source,
we consider two delay bounds:D = 20 and100. We assume
M = N = 4 and T = M + N − 1. For all the sources, the
average packet size1/µ = 100 bits, and the average arrival
rate α(0) = T log ρ, i.e. λ = 1. In Source III, we assume
p = q = 0.99 so that the source is really bursty since the state
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Fig. 4. Source II: Total loss probability vs. multiplexing rate forD = 20, 100

transitions happen rarely. When Source III is in on state, it
generates arrivals at the average rate twice of those in sources
1 and 2. If we rank the sources by their burstiness (standard
deviation to average ratio), source II is the least bursty and
III is the most. Note that in each figure, the optimal operating
points are almost independent of the SNR values and very
close to ther∗ obtained from the asymptotic case.

The optimal operating multiplexing rates for the three
sources are summarized in Figure 6. It shows that, given
the same delay bound, the more bursty the source is, the
higher the optimal multiplexing rate. Moreover, a less stringent
delay boundD requires lower transmission rates. This figure
summarizes the main intuitive relation between the source
burstiness, the optimal operating multiplexing rate, and the
delay bound.

VII. C ONCLUSION AND FUTURE STUDIES

Based on the effective bandwidth representation of the
source, we derive an analytical tradeoff between the end-to-end
loss probability and the multiplexing rate and find the optimal
multiplexing rate that minimizes this total loss probability. We
demonstrate the technique by examples of i.i.d sources and a
Markov-modulated source.

It would be of an interest to perform similar studies with
varying queuing discipline and buffer size. The buffer sizeis
of special interest since buffer overflow will introduce a third
source of loss in the system.
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Fig. 5. Source III: Total loss probability vs. multiplexingrate for D =
20, 100
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