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Abstract—We consider a system with a bursty and delay- Queue
sensitive data source to be transmitted over a constant-rat Source  ——p | || L Encoder — MIMO [ 1 5ocoder
MIMO channel with no CSl information at the transmitter. Giv en channel
the diversity-multiplexing tradeoff region of the MIMO cha nnel, Transmitter
we find the optimal multiplexing rate that optimizes the endio-
end loss probability. Based on the effective bandwidth modeof Fig. 1. Joint queuing and MIMO system.

the source, we present an analytical tradeoff between the mr
probability over the MIMO channel and the probability of del ay
violation. We illustrate the optimal operating points for i.i.d.

sources and Markov-modulated sources and show the relation djversity-multiplexing region that minimizes the endeod bit
between source burstiness, delay bound, and optimal multlpxing loss probability due to both the delay bound violation arel th
rate. :
MIMO channel decoding errors.
. INTRODUCTION Our work, in spirit, is related to [3]. In [3], the authors

Multiple antennas are an important means to improve tifgdy the optimal (time-varying) encoding rate of a system
performance of wireless systems. A MIMO system can provid@nsisting of a delay-sensitive constant rate source over a
two types of gains: diversity gain and multiplexing gaintime-varying channel. The _channel code is not assumed.ld_eal
Multiple antennas can be used to increase diversity to comJ&€ channel encoder receives data from the queue at a time-
channel fading and thus to decrease the probability of err$@ying rate and must encode the data at a rate matching
Alternatively, multiple antennas can increase data rate H}f instantaneous channel quality. If the queue chooses a
taking advantage of different fading over the antennas gh mstantaneogs output rate, then the.encoder must ehoos
multiplex independent data over these spatial channe[d]in channel codes with large rate, thus clearing the queue lguick
it is shown that diversity gain and multiplexing gain can bBUt resulting in high decoding error probability. Their us
obtained simultaneously, but there is a tradeoff between tH10Ws that the exponent of the optimal end-to-end bit loss
two gains: higher multiplexing gain comes at the price ofdow Probability is the minimum of the delay bound violation
diversity. exponent and the coding error exponent. As we will see, we

Our goal in this paper is to answer the question posé}@rive at similar results in.the context of a time-varyingisme
by Holliday and Goldsmith in [2]: "given the diversity-W'th MIMO encoder which assumes no knowledge of the
multiplexing region, where should one choose to operateMIMO channel and thus operates at a constant rate.

To answer this question, they consider a system consisfing o The paper is organized as follows. We begin in Section I
a source encoder concatenated with a MIMO channel encod¥fh @ background on the diversity-multiplexing region for
Their goal is to determine the optimal operating point on tHd/MO channel and on the effective bandwidth. We formulate
diversity-multiplexing region that minimizes the endene OUr problem in Section IIl and provide problem analysis in
distortion due to both the source encoder and channel degodpection IV. The main result, the optimal operating point, is
errors. shown in Section V. In section VI, we apply the technique

We answer the same question in a different context. Vi three source models to illustrate their operating poMis
consider a system with a bursty and delay-sensitive d&@nclude in Section VII.
source, concatenated with an infinite buffer, followed by a I
constant rate MIMO channel encoder (see Figure 1). Due to
the burstiness of the source, the arrival bits must be tedfer™ MIMO Channel Model
for transmission over the fixed rate MIMO channel. Any bits We use the same channel model as in [1]. We consider a
out of the decoder which are delayed more than an acceptableeless link with M transmit andN receive antennas. The
threshold is considered obsolete by the receiving appicat fading coefficients:;; that model the complex path gain from
This is in addition to the error bits caused by the channghnsmit antenng to receive antenna are i.i.d. complex
decoder. Our goal is to find the optimal operating point on thegrcular symmetric Guassian with unit variance. The chénne

. BACKGROUND



gain matrix H = [h;;] € CN*M is assumed to be known

to the receiver but not at the transmitter. We assume that the . ©m)
. . G
channel remains constant over a blockTofsymbols, while
each block is i.i.d. Therefore, in each block we can represen £ (1(m-1)(n-1))
the channel as §
5 z @,(m-2)(n-2)
Y =/ —HX+W, 1) 2
M 2 (r(m-n)(n-))
where X € CM*T andY e CV*T are the transmitted and L ‘m'";’"’""")
received signals, respectively;is the average SNR at each R o—J
. .- . .. Multiplexing Gain: r=R/log SNR
receive antenna; The additive noise vedtdris i.i.d. complex
Guassian with unit variance. Fig. 2. Diversity-multiplexing tradeoffd* (r) for generalm,n, andT >

As in [1], a family of codes{C(p)} of block lengthT’, one ™+7— 1
codebook at each SNR level, can be constructed. Define
R(p) as the number of bits per symbol for the codebook argifective bandwidth and large deviation literature (foample,
P.(p) as the average probability of error for the codebook. j#] and [7]) is that, in the asymptotic regime for largg the
channel code schem (p)} is said to achievenultiplexing tail probability decays exponentially witFs. More precisely,

ain r anddiversity gain d if
Jan ranaaversy @ I() Jim L logP(Q > B) < 5 (4)
. R(p -
phlgo log p - ) where the tail probability exponerdt is the solution to the
following equation:
and
log P, a(d) = C. ®)
lim 2820 _ 3) , _ , , ,
p—oo  logp The increasing functionv(s), s > 0, is called effective

Similar to [1], we will use the special symbét to denote Pandwidth and is fully determined by the proce$st,} (for
exponentially equality, i.e. f(z) = ¢’ as a shorthand for & formal discussion on effective bandwidth see [4] and the
lim log f(z) _ ’ references therein}. In this paper we consider the following
R ' two general source models:

For eachr, define the optimal diversity gaid*(r) as the LID. So " Consid ¢ hi
supremum of the diversity gain achieved by any scheme. Th.el) 1.D. Sources: Consider a source for whicfiX,} are

main result of [1] is summarized in the following statement.'"'d' random variables. The effective bandwidth is given b

_ o A(9)
Diversity-Multiplexing Tradeoff [1]: Assume the block a(é) = 5 (6)
lengthT > M + N — 1. Then the optimal tradeoff between sxXn .
diversity gain and multiplexing gain is a piecewise-lineafNere A(0) := log E[e’~] is the log moment generating
function d*(r) = (M — r)(N — ), for 0 < r < min(M, N) function of X, (for derivation of these results see [5]).
shown in Figure 2. - ’ In Section VI, we will consider a compound Poisson process

as an example of this type of the sources.
The diversity-multiplexing tradeoff is essentially thede- 2) Markov-Modulated Sources: The arrival strean{ X,} is

off between the error probability and the data rate of a systemodulated by a discrete-time, finite-state, irreducibiatien-
in the asymptotics of high SNR with fixed block length.  ary Markov chain{ H,} such that the distribution oX; at time
We assume without loss of generality that the rate of thigne ¢ depends only on the source stdfg at timet. Given a
codebook isk(p) = rT log p bits per block. Also, we assumerealization of the chai{ H;}, the X;’s are independent. The
that for any multiplexing gain- there is a codebook thatsource statéd; can be thought of as modeling the burstiness
achieves the optimal diversity gaiti(r). of the stream at time. The Markov structure models the
i , correlation in the arrival statistics over time [6]. It iscstn
B. Source Model and Effective Bandwidth that Markov-modulated source also has an effective bartwid
The source is modeled by a stochastic arrival str¢af}, in the form of (6) butA(d) is instead thdog spectral radius
where X, indicates the number of bits arrived at time slot function (see [6], [7], and [8]}.In Section VI, we will consider
The arrived bits are queued at an infinite buffer and served on-off Poisson process as an example of Markov-modulated
with a fixed rateC' in first-come-first-served manner. Sinceources.
we are interested in real-time applications with strictagel Note that Markov-modulated source (with multiple time
bounds, it is of an interest to study the queue delay sidistscales) is often used to model MPEG video traffic [9].
and their dependence on the statistical characteristi¢Xef.

In particular, we are interested in the tail probability bet resg'é)éﬁvet:}at the average and peak amival rates af6) and a(co),

form P(Q = B)'_ where is the steady-state queue length 2In fact, the i.i.d. source is a degenerated case of Markodtiated sources
and B is the maximum acceptable bound. The key result frohere the Markov chain is degenerated to only one state.



I1l. PROBLEM FORMULATION p~ % (" Since a timeslot contains exactly one block, when

We begin by describing formally the system model. wihere is a decoding error, the dat_a_ in the. whole timeslot is in
consider time-slotted systénwith X, being the number of €ITOr. He.nce, the average probability of bit loss due to MIMO
bits generated at the source into an infinite buffer in tinm sichannel is
t. The arrivals that are not immediately transmitted on the P, = ¢~ (Nlogp. (11)
outgoing channel are queued up in the buffer. Without loss of
generality, we assume a timeslot containsymbols. Thus, a Sinced*(r) is decreasing on the multiplexing ratgit is clear
timeslot matches with the codebook block size. At SNBhd  that P. is increasing orr.
multiplexing rater, the queue is served by a MIMO channel Next, we obtain an analytical relation of the error probiapil
encoder at a fixed rate (bits per timeslot) of due to delay bound violatiorn,, and the multiplexing rate.

C = 1Tlogp ) Let@ bg the steady-state queue Iength in the puffer. Since the
' gueue is served at the constant ratebits per timeslot, we

We consider a bursty and delay-sensitive application whetefine B := DC be the queue length bound corresponding to
any bits delayed more thaf timeslots are considered ob-the delay bound), i.e.
solete. The source process is modeled as a source with an
effective bandwidth ofa(s), defined for alls > 0. Some
examples of the source processes are given in Section VI.
assume that the average arrival ra{®) is scaled withlog p,
i.e. we define a constant > 0 as the following:

B = rDT log p. (12)

Weonsider a bit who sees ahead of itself an amount of work
greater tharB. Such a bit is guaranteed to be delayed by more
than D timeslots; hence, it will be obsolete. On the other hand,
a(0) assuming a negligible propagation delay, such bits arerihe o
T Tlogp’ ®) it lost due to delay violations. In other words, the pralitsib

of a bit becoming obsolete is nothing but the tail probapit
Moreover, we assume that(0) < C. _In anothe_r word, the steady-state queue length, ii§.~ P(Q > B). Now we

by (.7) ar_ld (8), we assume the following condition on th‘ﬁse the effective bandwidth result (discussed in Sectids),l|
multiplexing rater: as well as (5), (7), (8) and (12), to arrive at the following:

r> A\ (9) Pq - 6753 _ 6767‘DTlogp (13)

There are two causes of performance loss in the systen]q: . .

Any obsolete bits out of the decoder are considered lost &y uf ered is the solution to
receiving application. In addition, error bits due to deogdn

the MIMO channel are not retransmitted (i.e. no channel ARQ)
and considered lost as well. L&}, denote the probability of
bit loss due to delay bound violatior}, the probability of
bit loss due to MIMO decoding errors, ang the end-to-
end total bit loss probability that is perceived by the recej

application. By union bound, we have

P, <P,+P. (10)

ra(0)
A

Note that from (14) and the fact thafs) is increasing in
s, it is clear thatd is increasing inr; hence,P, is decreasing
in . Now, by (11) and (13), we can rewrite the bound on the
total loss probability as

a(d) =rTlogp =

(14)

P < eférDTlogp + 67d*(7‘) log p

e—érDTlogP-ﬁ-o(log p) + e—d*(r) log p+o(log p) (15)
Intuitively we expect thatP, is decreasing on the multi-

plexing rater because the higher rate the queue is served§logp — oo. The terms in (15) provide us with an explicit
the less time the bits spend waiting in the queue. On tgBaracterization of the diversity-multiplexing tradeafid its
other hand, from the diversity-multiplexing tradeoff of MO  impact on the total loss probability, quite similar to [2]h&
coding, P, is increasing on-. Therefore, we expect and will first term, corresponding to the delay bound violation, is
show rigorously later that there is a tradeoff between these decreasing in the multiplexing rate while the second term,
types of loss in the system. Our objective is to find the optimgorresponding to the channel error probability, is inciregs

multiplexing rater* that minimizes the total end-to-end losgvith 7. Hence, it is clear that there will be an optimal choice
probability. of A < r <min(M, N).

IV. PROBLEM ANALYSIS V. MINIMIZING TOTAL LOSSPROBABILITY

First, we obtain an analytical relation of the error proligbi A. Asymptotic Bound
due to MIMO channelP,, and the multiplexing rate. By the
diversity-multiplexing tradeoff for MIMO channel, we have
that the probability of the whol&'-symbol block in error is

To get analytical results for the optimal total loss proligbi
bound, we consider the asymptotic case wher> co. The
minimum of P, happens when the exponent of the two terms

3For simplicity of presentation. The concept in this paperrksofor in (15) are withino(1) of each other (note that if the exponents
continuous system as well since the effective bandwidthishéiere too. were not in the same order, one term would dominate in the



sum adog p — o0). In another word, the optimal multiplexing 10°
rate r* happens whem* is the root of

a*(%@))rw = d*(r) + o(1), (16)
where we substituté with a*l(%(o)) by using (14). Notice
that the optimal bound depends on the statistical chafiattsr
of the source. This bound is illustrated in Figures 3 to 5 for st
various data sources discussed in Section VI. " ‘ SNR=90
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B. Non-Asymptotic Bound

For practical systems, the SNR is large but finite. If
we assume that the asymptotic tail probability and decoding 1©°
error probability hold for finite SNR, we can find the opti- '
mal diversity-multiplexing tradeoff by solving the follomg 107
optimization problem:

pre MESRIT L ) )

Total Loss Probability

min
A<r<min(M,N)

—— SNR=10
co SNR=30
—— SNR=50
’ - - —=SNR=70
SNR=90

The above optimizations are illustrated in Figures 3 to 5 for 10°
various data sources.
1 1‘.5 é 2‘.5 é 35 4
Vl EXAMPLES Multiplexing Rate r
(b) D=100

A. 1.1.D. Compound Poisson Sources

The arrival in a timeslot,X;, is an aggregation of PoissonFig. 3. Source I: Total loss probability vs. multiplexingedor D = 20, 100
pajc\:fket arrivals with general I(_angth dlstr|but|on., P&y = B Markov-Modulated Source
> n_1Y, whereY;,Ys,... are i.i.d. random variables with ) )
distribution G, and N is an independent Poisson randonource lil: On-Off Exponential-Length Poisson
variable with ratev packets per timeslot, then the effective We consider a simple Markov modulated source: an on-

bandwidth is [4] off Markov source wherefl; € {off,on}. When H, is on,
arrivals {X;} are generated by a compound Poisson stream

a(8) = v /(eéw — 1)dG(z). (18) Wwith exponential length at average ratéu. When H, is off,

o there are no arrivals. Suppose the transition probabiléyrix

The average bit arrivals per timeslotigy which is dictated i | P 17 , where0 < p,q < 1, then the effective
by the source process, i.e/u = «(0).

q
bandwidth for this on-off Poisson source is ([6] and [7])

Source I Exponential-Length Poisson 1 1
Let Y3,Ys, ... be exponentially distributed with megfy, a(d) = 5 log [§(G(5) + v/ a?(8) +4b(9))
then the effective bandwidth for this source is, by (18),
where
s f0Zd<y, Sv
a(0) = {go if 6> 1. a(d) = p+ qexp(m),
By using (14), and the fact that(0) = v/, we obtain the b(6) = (1—p—q)exp( ov )-
error exponend of the tail probability as following: =9
A The average number of bit arrivals per timeslo(ﬁﬁ)ﬁ.
6=p(l--). (19)
r C. Results
Note that (19) confirms that the tail probability exponens  Figures 3 to 5 show the the total loss probabilityvs. the
Increasing Inr. multiplexing rater for different levels of SNRy for Sources

I-111, respectively. The vertical dashed lines show theimopt
r* obtained from the asymptotic case (16). For each source,
we consider two delay bound® = 20 and 100. We assume
M =N =4andT = M + N — 1. For all the sources, the
average packet sizé/;, = 100 bits, and the average arrival
a(6) = v(etr — ) rate (0) = T'logp, i.e. A = 1. In Source Ill, we assume

0 p = ¢ = 0.99 so that the source is really bursty since the state

Source II: Fixed-Length Poisson

Let the packet length be deterministic and of sizg, i.e.
Y, = 1/u, Vn. From (18) the effective bandwidth for this
source is



Total Loss Probability

Total Loss Probability

Fig. 4. Source II: Total loss probability vs. multiplexingte forD = 20, 100

transitions happen rarely. When Source lll is in on state, it
generates arrivals at the average rate twice of those ircesur

1 and 2. If we rank the sources by their burstiness (standard
deviation to average ratio), source Il is the least bursty an
[l is the most. Note that in each figure, the optimal opeiatin
points are almost independent of the SNR values and very
close to ther* obtained from the asymptotic case.

The optimal operating multiplexing rates for the three
sources are summarized in Figure 6. It shows that, given
the same delay bound, the more bursty the source is,
higher the optimal multiplexing rate. Moreover, a lessngjent
delay boundD requires lower transmission rates. This figure
summarizes the main intuitive relation between the sourcg
burstiness, the optimal operating multiplexing rate, ahe t

delay bound.

VII. CONCLUSION AND FUTURE STUDIES

Based on the effective bandwidth representation of thil
source, we derive an analytical tradeoff between the erahitb
loss probability and the multiplexing rate and find the optim
multiplexing rate that minimizes this total loss probatlil\We
demonstrate the technique by examples of i.i.d sources and
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Markov-modulated source.

It would be of an interest to perform similar studies wit
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Source IlI: Total loss probability vs. multiplexingite for D =
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Ig. 6. Comparison of the optimal multiplexing rate’s for Sources I-1ll.
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