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Introduction to LDPC Codes

• These codes were invented by Gallager in his Ph.D. 
dissertation at M.I.T. in 1960.

• They were ignored for many years since they were 
thought to be impractical.

• But with present day technology they are very 
practical.

• Their performance is similar to turbo codes but they 
may have some implementation advantages.



Outline: Some Questions

• What is a parity check code?

• What is an LDPC code?

• What is a message passing decoder for 

LDPC codes?

• What is the performance of these codes?



What is a Parity Check Code?

• A binary parity check code is a block code: i.e., a 
collection of binary vectors of fixed length n.

• The symbols in the code satisfy r parity check 
equations of the form:

xa xb  xc  …  xz = 0

where  means modulo 2 addition and       

xa, xb, xc , … , xz

are the code symbols in the equation.

• Each codeword of length n can  contain (n-r)=k
information digits and r check digits.



What is a Parity Check Matrix?

• A parity check matrix is an r-row by n-
column binary matrix.  Remember k=n-r.

• The rows represent the equations and the 
columns represent the digits in the code 
word.

• There is a 1 in the i-th row and j-th column if 
and only if the i-th code digit is contained in 
the j-th equation.



Example:  Hamming Code with 

n=7, k=4, and r=3
• For a code word of the form c1, c2, c3, c4, c5, c6, c7, the equations 

are:

c1  c2  c3  c5 = 0

c1  c2  c4  c6 = 0

c1  c3  c4  c7 = 0.

• The parity check matrix for this code is then:

1 1 1 0 1 0 0

1 1 0 1 0 1 0

1 0 1 1 0 0 1

• Note that c1 is contained in all three equations while c2 is 
contained in only the first two equations. 



What is an LDPC Code?

• The percentage of 1’s in the parity check 
matrix for a LDPC code is low.

• A regular LDPC code has the property that:
– every code digit is contained in the same number

of equations, 

– each equation contains the same number of code 
symbols.

• An irregular LDPC code relaxes these 
conditions.



The Equations for A Simple 

LDPC Code with n=12

c3  c6  c7  c8 = 0

c1  c2  c5  c12 = 0

c4  c9  c10  c11  = 0

c2  c6  c7  c10 = 0

c1  c3  c8  c11 = 0

c4  c5  c9  c12  = 0

c1  c4  c5  c7 = 0

c6  c8  c11  c12= 0

c2  c3  c9  c10  = 0.

• There are actually only 7 independent equations so 
there are 7 parity digits.



The Parity Check Matrix for the 

Simple LDPC Code
c1 c2 c3 c4 c5 c6 c7 c8 c9c10c11c12

0  0  1 0  0  1  1  1 0  0  0  0

1 1 0  0  1 0  0  0  0  0  0  1

0  0  0  1 0  0  0  0  1  1  1 0

0  1 0  0  0  1  1 0  0  1 0  0

1 0  1 0  0  0  0  1 0  0  1 0

0  0  0  1  1 0  0  0  1 0  0  1

1 0  0  1  1 0  1 0  0  0  0  0

0  0  0  0  0  1 0  1 0  0  1  1

0  1  1 0  0  0  0  0  1  1 0  0

c3  c6  c7  c8 = 0

c1  c2  c5  c12 = 0

c4  c9  c10  c11  = 0

c2  c6  c7  c10 = 0

c1  c3  c8  c11 = 0

c4  c5  c9  c12  = 0

c1  c4  c5  c7 = 0

c6  c8  c11  c12= 0

c2  c3  c9  c10  = 0



The Parity Check Matrix for the 

Simple LDPC Code
0  0  1 0  0  1  1  1 0  0  0  0

1 1 0  0  1 0  0  0  0  0  0  1

0  0  0  1 0  0  0  0  1  1  1 0

0  1 0  0  0  1  1 0  0  1 0  0

1 0  1 0  0  0  0  1 0  0  1 0

0  0  0  1  1 0  0  0  1 0  0  1

1 0  0  1  1 0  1 0  0  0  0  0

0  0  0  0  0  1 0  1 0  0  1  1

0  1  1 0  0  0  0  0  1  1 0  0

• Note that each code symbol is contained in 3 
equations and each equation involves 4 code 
symbols.



A Graphical Description of LDPC 

Codes
• Decoding of LDPC codes is best understood by a 

graphical description.

• The graph has two types of nodes: bit nodes and 
parity nodes.

• Each bit node represents a code symbol and each 
parity node represents a parity equation.

• There is a line drawn between a bit node and a parity 
node if and only if that bit is involved in that parity 
equation.



The Graph for the Simple LDPC 

Code

0  0  1 0  0  1 1 1 0  0  0  0

1 1 0  0  1 0  0  0  0  0  0  1

0  0  0  1 0  0  0  0  1  1  1 0

0  1 0  0  0  1  1 0  0  1 0  0

1 0  1 0  0  0  0  1 0  0  1 0

0  0  0  1  1 0  0  0  1 0  0  1

1 0  0  1  1 0  1 0  0  0  0  0

0  0  0  0  0  1 0  1  0  0  1  1

0  1  1 0  0  0  0  0  1  1 0  0

Only the lines corresponding to the 1st row and 1st column are shown.

Squares represent parity equations.

Circles represent code symbols.



Entire Graph for the Simple 

LDPC Code

• Note that each bit node has 3 lines connecting it to 

parity nodes and each parity node has 4 lines 

connecting it to bit nodes.



Decoding of LDPC Codes by 

Message Passing on the Graph

• Decoding is accomplished by passing messages 

along the lines of the graph.

• The messages on the lines that connect to the i-th bit 

node, ci, are estimates of Pr[ci =1] (or some 

equivalent information). 

• At the nodes the various estimates are combined in 

a particular way.



Decoding of LDPC Codes by 

Message Passing on the Graph
• Each bit node is furnished an initial estimate of the 

probability it is a 1 from the soft output of the 
channel.

• The bit node broadcasts this initial estimate to the 
parity nodes on the lines connected to that bit node.

• But each parity node must make new estimates for 
the bits involved in that parity equation and send 
these new estimates (on the lines) back to the bit 
nodes.



Estimation of Probabilities by 

Parity Nodes
• Each parity node knows that there are an 

even number of 1’s in the bits connected to 
that node. 

• But the parity node has received estimates of 
the probability that each bit node connected 
to it is a 1.

• The parity node sends a new estimate to the 
i-th bit node based upon all the other
probabilities furnished to it. 



Estimation of Probabilities by 

Parity Nodes
• For example, consider the parity node corresponding to the 

equation     c3  c6  c7  c8 = 0.

• This parity node has the estimates p3, p6, p7, and p8 
corresponding to the bit nodes c3, c6, c7, and c8, where pi is an 
estimate for Pr[ci=1].

• The new estimate for the bit node c3 is: 

p’3=p6(1-p7)(1-p8)+ p7(1-p6)(1-p8)+ p8(1-p6)(1-p7)+ p6p7p8

and for the other nodes:

p’6=p3(1-p7)(1-p8)+ p7(1-p3)(1-p8)+ p8(1-p3)(1-p7)+ p3p7p8

p’7=p6(1-p3)(1-p8)+ p3(1-p6)(1-p8)+ p8(1-p3)(1-p6)+ p3p6p8

p’8=p6(1-p7)(1-p3)+ p7(1-p6)(1-p3)+ p3(1-p6)(1-p7)+ p3p6p7



Estimation of Probabilities by Bit 

Nodes
• But the bit nodes are provided different estimates of 

Pr[c=1] by the channel and by each of the parity 
nodes connected to it.

• It no longer broadcasts a single estimate but sends 
different estimates to each parity equation.

• The new estimate sent to each parity node is 
obtained by combining all other current estimates.

• That is, in determining the new estimate sent to a 
parity node, it ignores the estimate received from 
that parity node. 



Estimation of Probabilities by Bit 

Nodes
• The new estimate sent to each parity node is equal to the 

normalized product of the other estimates.

• The proper normalization is a detail which will be discussed 

later.

• If instead of passing estimates of Pr[c=1] we pass estimates of 

log {Pr[c=1]/Pr[c=0]} where Pr[c=0] = 1 - Pr[c=1], we merely 

need to add the appropriate terms.

• The channel estimate is always used in all estimates passed to 

the parity node.



Estimation of Probabilities by Bit 

Nodes

• The following table illustrates how estimates are 

combined by a bit node involved in 3 parity 

equations A, B, and C.

Estimate received from channel: pch

Estimate received from parity node A: pA

Estimate received from parity node B: pB

Estimate received from parity node C: pC

New estimate sent to parity node A: K pch pB pC

New estimate sent to parity node B: K pchpA pC

New estimate sent to parity node C: K pchpA pB



The Rest of the Decoding 

Algorithm
• The process now repeats:  parity nodes 

passing messages to bit nodes and bit nodes 
passing messages to parity nodes.

• At the last step, a final estimate is computed 
at each bit node by computing the 
normalized product of all of its estimates.

• Then a hard decision is made on each bit by 
comparing the final estimate with the 
threshold 0.5.



Final Estimate Made by Bit 

Nodes

• The following table illustrates how the final estimate 

is made by a bit node involved in 3 parity equations 

A, B, and C.

Estimate received from channel: pch

Estimate received from parity node A: pA

Estimate received from parity node B: pB

Estimate received from parity node C: pC

FINAL ESTIMATE: K pchpA pB pC



Decoding of Simple Example

• Suppose the following Pr[Ci=1], i=1, 2, …, 12 are 

obtained from channel:

0.9  0.5  0.4  0.3  0.9  0.9  0.9  0.9  0.9  0.9  0.9  0.9

• We now watch the decoder decode.



Decoding of Simple Example:

First 4 Bit Nodes Only
• Initial broadcast from first 4 bit nodes:

• Transmission from parity nodes to these 4 bit nodes:

• Next transmission from the first 4 bit nodes:

C1 C2 C3 C4

0.9

0.9
0.9

0.9

0.5

0.5
0.5

0.5

0.4

0.4
0.4 0.4

0.3

0.3 0.3
0.3

C1 C2 C3 C4

C4C3C2C1

0.5

0.436

0.372

0.756

0.4360.756 0.756

0.756

0.5 0.756

0.756

0.756

0.805
0.842

0.874 0.705
0.705

0.906 0.674
0.674

0.865 0.804
0.804

0.804



Message Passing for First 4 

Bit Nodes for More Iterations
Message Passing
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C2

C3

C4

C1 0.900 0.500 0.436 0.372 0.805 0.842 0.874 0.594 0.640 0.656 0.968 0.962 0.959

C2 0.500 0.756 0.756 0.436 0.705 0.705 0.906 0.640 0.690 0.630 0.791 0.751 0.798

C3 0.400 0.756 0.756 0.500 0.674 0.674 0.865 0.790 0.776 0.644 0.807 0.820 0.897

C4 0.300 0.756 0.756 0.756 0.804 0.804 0.804 0.749 0.718 0.692 0.710 0.742 0.765

Up Down Down Down Up Up Up Down Down Down Up Up Up



Messages Passed To and 

From All 12 Bit Nodes

Up Down Down Down Up Up Up Down Down Down Up Up Up

C1 0.900 0.500 0.436 0.372 0.805 0.842 0.874 0.594 0.640 0.656 0.968 0.962 0.959

C2 0.500 0.756 0.756 0.436 0.705 0.705 0.906 0.640 0.690 0.630 0.791 0.751 0.798

C3 0.400 0.756 0.756 0.500 0.674 0.674 0.865 0.790 0.776 0.644 0.807 0.820 0.897

C4 0.300 0.756 0.756 0.756 0.804 0.804 0.804 0.749 0.718 0.692 0.710 0.742 0.765

C5 0.900 0.500 0.372 0.372 0.759 0.842 0.842 0.611 0.694 0.671 0.976 0.966 0.970

C6 0.900 0.436 0.500 0.756 0.965 0.956 0.874 0.608 0.586 0.643 0.958 0.962 0.952

C7 0.900 0.436 0.500 0.372 0.842 0.805 0.874 0.647 0.628 0.656 0.967 0.969 0.965

C8 0.900 0.436 0.436 0.756 0.956 0.956 0.843 0.611 0.605 0.656 0.963 0.964 0.956

C9 0.900 0.372 0.372 0.500 0.842 0.842 0.759 0.722 0.694 0.703 0.980 0.982 0.981

C10 0.900 0.372 0.500 0.500 0.900 0.842 0.842 0.690 0.614 0.654 0.964 0.974 0.970

C11 0.900 0.372 0.436 0.756 0.956 0.943 0.805 0.667 0.608 0.676 0.967 0.974 0.965

C12 0.900 0.500 0.372 0.756 0.943 0.965 0.842 0.565 0.642 0.657 0.969 0.957 0.955



Messages Passed To and 

From All 12 Bit Nodes
Message Passing
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More Iterations

All 12 Bit Nodes
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More Interesting Example

All 12 Bit Nodes
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Computation at Bit Nodes

• If estimates of probabilities are statistically 
independent you should multiply them.

• But you need to normalize the product.  Otherwise 
the product is smaller than every single estimate.

• For example, with three independent estimates all 
equal to 0.9, the unnormalized product is:

(0.9)3 = 0.729

where the correct normalized product is: 

(0.9)3  / [(0.1)3+ (0.9)3 ] = 0.9986



Derivation of Correct 

Normalization
• Assume we have 3 independent estimates, pa, pb, and pc from which 

we compute the new estimate p’ from the formula:

p’ = K pa pb pc.

• But the same normalization must hold for (1-p’):

(1-p’) = K(1- pa)(1- pb)(1- pc)

• From  the first equation (1-p’)  = 1- K pa pb pc.  

• Setting (1- K pa pb pc ) equal to K(1- pa)(1- pb)(1- pc) and solving for K 
we obtain:

K = 1 / [(1- pa)(1- pb)(1- pc) + pa pb pc]



Assumption of Independence

• Note that in our example, parts of the graph looks like:

• This is called a cycle of length 4.

• Cycles cause estimates to be dependent and our combining 
formulas are incorrect.

• As a result short cycles should be avoided in the design of 
codes.



Computation at Parity Nodes

• When a parity equation involves many bits, an 

alternative formula is used.

• Details are omitted here but can be found in the 

literature.



Rate of a Regular LDPC Code
• Assume a LDPC is designed where:

(1) every bit is in J parity checks, and

(2) every parity check checks K bits.

• Since the number of 1’s in a parity check matrix is the same 
whether we count by rows or columns, we have 

J (#  of columns) = K (# of rows)

or J (n) = K (n-k).

• Solving for k / n, we have k/n = (1- J / K), the rate of the code.  

• Higher rate codes can be obtained by puncturing lower rate 
codes.



Design of a Parity Matrix for a 

Regular LDPC Code
• The following procedure was suggested by Gallager.  We 

illustrate it for a code with J = 3 and  K = 4 .

1. Construct the first n/4 rows as follows:

1  1  1  1  0  0  0  0  .  .  .  .  0  0  0  0

0  0  0  0  1  1  1  1  .  .  .  .  0  0  0  0

.   .   .   .   .   .   .   .   .  .  .  .   .   .   .   .

0  0  0  0  0  0  0  0  .  .  .  .  1  1  1  1

2.  Construct the next n/4 rows by permuting the columns of the 
first n/4 rows.

3.  Repeat 2 using another permutation of the columns.

n

n/4



Irregular LDPC Codes

• Irregular LDPC codes have a variable number of 1’s in the rows 

and in the columns.

• The optimal distributions for the rows and the columns are 

found by a technique called density evolution. 

• Irregular LDPC codes perform better than regular LDPC codes.

• The basic idea is to give greater protection to some digits and 

to have some of the parity equations give more reliable

information to give the decoding a jump start .



Paper on Irregular LDPC Codes

Luby et al (ISIT 1998)



Paper on Irregular LDPC Codes

Luby et al (ISIT 1998)
• Code Rate ½

• Left degrees
L3  =.44506 l5  =. 26704

L9  =.14835 l17=. 07854

l33=.04046 l65=. 02055

• Right degrees
r7  =.38282 r8  =. 29548

r19=.10225 r20=. 18321

r84=.04179 r85=. 02445



From MacKay’s Website



From MacKay’s Website

• The figure shows the performance of various codes with rate 1/4
over the Gaussian Channel. From left to right: 

• Irregular low density parity check code over GF(8), blocklength 
48000 bits (Davey and MacKay, 1999); 

• JPL turbo code (JPL, 1996) blocklength 65536; 

• Regular LDPC over GF(16), blocklength 24448 bits (Davey and 
MacKay, 1998); 

• Irregular binary LDPC, blocklength 16000 bits (Davey, 1999); 

• M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi and D.A. Spielman's 
(1998) irregular binary LDPC, blocklength 64000 bits; 

• JPL's code for Galileo: a concatenated code based on constraint 
length 15, rate 1/4 convolutional code (in 1992, this was the best 
known code of rate 1/4); blocklength about 64,000 bits; 

• Regular binary LDPC: blocklength 40000 bits (MacKay, 1999). 



Conclusions

• The inherent parallelism in decoding LDPC codes suggests 

their use in high data rate systems.

• A comparison of LDPC codes and  turbo codes is complicated 

and depends on many issues: e.g., block length, channel 

model, etc.

• LDPC codes are well worthwhile investigating.  Some issues to 

be resolved are:

– Performance for channel models of interest 

– Optimization of irregular LDPC codes (for channels of interest). 

– Implementation in VLSI.

– Patent issues.


