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Introduction to LDPC Codes

These codes were invented by Gallager in his Ph.D.
dissertation at M.I.T. in 1960.

They were ignored for many years since they were
thought to be impractical.

But with present day technology they are very
practical.

Their performance is similar to turbo codes but they
may have some implementation advantages.



Outline: Some Questions

What is a parity check code?
What is an LDPC code?

What is a message passing decoder for
LDPC codes?

What is the performance of these codes?



What is a Parity Check Code?

A binary parity check code is a block code: i.e., a
collection of binary vectors of fixed length n.

« The symbols in the code satisfy r parity check
equations of the form:

X Xp @ XD ... X, =0
where @ means modulo 2 addition and
Xay Xpy Xg o e s Xy
are the code symbols in the equation.

« Each codeword of length n can contain (n-r)=k
iInformation digits and r check digits.



What is a Parity Check Matrix?

* A parity check matrix is an r-row by n-
column binary matrix. Remember k=n-r.

« The rows represent the equations and the
columns represent the digits in the code
word.

« Thereisalinthei-th row and j-th column if
and only if the i-th code digit is contained Iin
the j-th equation.



Example: Hamming Code with
n=7, k=4, and r=3

 For acode word of the form c,, c,, C3, Cy4, Cs, Cg, C4, the equations
are:

cC,Pc,®c;®c;=0
c,®c,®c,®cy=0
c,®c;&c,®c,=0.

« The parity check matrix for this code is then:

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

* Note that ¢, is contained in all three equations while c, is
contained in only the first two equations.



What is an LDPC Code?

 The percentage of 1’s in the parity check
matrix for a LDPC code is low.

« Aregular LDPC code has the property that:

— every code digit is contained in the same number
of equations,

— each equation contains the same number of code
symbols.

 An irregular LDPC code relaxes these
conditions.



The Equations for A Simple
LDPC Code with n=12

C;@cg®dc,®cg =0
c,®c,®c:Dc,=0
c,®co@cCcy®cy; =0
cC,®cs®c,®cy ;=0
c,Pcy;®cg®cy; =0
c,&c;®&cy®cy, =0
c,®c,®c:dc, =0
Ce®cCcg®@Ccy;®DC,=0
c,®c;®&cqg®cyy =0.

 There are actually only 7 independent equations so
there are 7 parity digits.



The Parity Check Matrix for the
Simple LDPC Code

C1C,C3C4C5C5C7C5CyC10C11C15

001001110000 C;@cg®c,®cg =0
110010000001 c,®c,®c;®cy,=0
000100001110 c,®ce®cy®dcy; =0
010001100100 c,®cs®c,®cy ;=0
101000010010 c,®c;®cg®dcy; =0
000110001001 c,®&c;®cy®cCy, =0
100110100000 c,®c,®c;®c, =0
000001010011 Ce®@cg®cCc;©cCy,=0
011000001100 c,®c;®cyg®cCcy; =0



The Parity Check Matrix for the
Simple LDPC Code

001001110000
110010000001
000100001110
010001100100
101000010010
000110001001
100110100000
000001010011
011000001100

* Note that each code symbol is contained in 3
equations and each equation involves 4 code
symbols.



A Graphical Description of LDPC

Codes

Decoding of LDPC codes is best understood by a
graphical description.

The graph has two types of nodes: bit nodes and
parity nodes.

Each bit node represents a code symbol and each
parity node represents a parity equation.

There is aline drawn between a bit node and a parity
node if and only if that bit is involved in that parity
equation.



The Graph for the Simple LDPC
Code

001001110000
110010000001
000100001110
010001100100
101000010010
000110001001
100110100000
000001010011
011000001100

Squares represent parity equations.

Circles represent code symbols.

O O O O 0O O

Only the lines corresponding to the 18t row and 18t column are shown,




Entire Graph for the Simple
LDPC Code

 Note that each bit node has 3 lines connecting it to
parity nodes and each parity node has 4 lines
connecting it to bit nodes.




Decoding of LDPC Codes by
Message Passing on the Graph

 Decoding is accomplished by passing messages
along the lines of the graph.

« The messages on the lines that connect to the i-th bit
node, c;, are estimates of Pr[c, =1] (or some
equivalent information).

« Atthe nodes the various estimates are combined in
a particular way.



Decoding of LDPC Codes by
Message Passing on the Graph

« Each bit node is furnished an initial estimate of the
probability it is a 1 from the soft output of the
channel.

 The bit node broadcasts this initial estimate to the
parity nodes on the lines connected to that bit node.

 But each parity node must make new estimates for
the bits involved in that parity equation and send
these new estimates (on the lines) back to the bit
nodes.



Estimation of Probabilities by
Parity Nodes

« Each parity node knows that there are an
even number of 1’s in the bits connected to
that node.

« But the parity node has received estimates of
the probability that each bit node connected
toitis al.

 The parity node sends a new estimate to the
I-th bit node based upon all the other
probabilities furnished to it.



Estimation of Probabilities by
Parity Nodes

For example, consider the parity node corresponding to the
equation c;®@c;®c,Dcg =0.

This parity node has the estimates p, pgs, P, and pg _
corresponding to the bit nodes c,, c,, €, and cg, where p; is an
estimate for Pr[c,=1].

The new estimate for the bit node c; is:

P’3=Ps(1-p7)(1-pg)*+ P7(1-P6)(1-Pg)+ Ps(1-Pe)(1-p7)+ PP-Pg
and for the other nodes:
P’s=P3(1-p7)(1-pg)*+ pP7(1-p3)(1-pg)+ Pg(1-p3)(1-p,)+ P3P-Pg

P’7=Ps(1-P3)(1-pPg)+ P3(1-ps)(1-pg)* Pg(1-P3)(1-Pe)* P3PePs
P’s=Ps(1-P,)(1-p3)*+ P7(1-pg)(1-p3)*+ P3(1-pPe)(1-p7)+ P3PeP-



Estimation of Probabilities by Bit
Nodes

 But the bit nodes are provided different estimates of
Pr[c=1] by the channel and by each of the parity
nodes connected to it.

It no longer broadcasts a single estimate but sends
different estimates to each parity equation.

« The new estimate sent to each parity node is
obtained by combining all other current estimates.

« Thatis, in determining the new estimate sent to a
parity node, it ignores the estimate received from
that parity node.



Estimation of Probabilities by Bit
Nodes

The new estimate sent to each parity node is equal to the
normalized product of the other estimates.

The proper normalization is a detail which will be discussed
later.

If instead of passing estimates of Pr[c=1] we pass estimates of
log {Pr[c=1]/Pr[c=0]} where Pr[c=0] =1 - Pr[c=1], we merely
need to add the appropriate terms.

The channel estimate i1s always used in all estimates passed to
the parity node.



Estimation of Probabilities by Bit

Nodes

 The following table illustrates how estimates are
combined by a bit node involved in 3 parity

equations A, B, and C.

Estimate received from channel:

Estimate received from parity node A:
Estimate received from parity node B:
Estimate received from parity node C:

New estimate sent to parity node A:
New estimate sent to parity node B:
New estimate sent to parity node C:

pch
Pa
Ps
Pc

K pch pB pC
K PehPaPc
K pchpA pB



The Rest of the Decoding
Algorithm

* The process now repeats: parity nodes
passing messages to bit nodes and bit nodes
passing messages to parity nodes.

- At the last step, a final estimate is computed
at each bit node by computing the
normalized product of all of its estimates.

 Then a hard decision is made on each bit by
comparing the final estimate with the
threshold 0.5.



Final Estimate Made by Bit
Nodes

 The following table illustrates how the final estimate
IS made by a bit node involved in 3 parity equations
A, B, and C.

Estimate received from channel: Pech
Estimate received from parity node A: Pa
Estimate received from parity node B: Pg
Estimate received from parity node C: Pc

FINAL ESTIMATE: K PcnPa P Pc



Decoding of Simple Example

* Suppose the following Pr[C.=1], i=1, 2, ..., 12 are
obtained from channel:

09 05040309090909090909 0.9

« We now watch the decoder decode.



Decoding of Simple Example:
First 4 Bit Nodes Only

. Inltlal broadcast from flrst 4 bit nodes

VYT

 Transmission from parity nodes to these 4 bit nodes:

0.436 0.756 0.756 0.756
0.372 0.756 0.436 0.756 0.5 0.756 0.756

RYYANVANVANY,
 Next transmission from the first 4 bit nodes:

0.842 0.705 0.674 0.804
0.805\ ? /9.874 Of ? /0.906 OQ ? /0.865 0.@< /0.804



Message Passing for First 4
Bit Nodes for More lterations

Message Passing

1.000

0.900

0.800

0.700

0.600
= ——C1
I\
O -=-C2
= 0.500 c3
o ——C4

0.400

0.300

0.200

0.100

0.000

Up |Down |Down |Down | Up Up Up |Down | Down | Down | Up Up Up

——C1| 0.900 | 0.500 | 0.436 | 0.372 | 0.805 | 0.842 | 0.874 | 0.594 | 0.640 | 0.656 | 0.968 | 0.962 | 0.959
—=—C2| 0500 | 0.756 | 0.756 | 0.436 | 0.705 | 0.705 | 0.906 | 0.640 | 0.690 | 0.630 | 0.791 | 0.751 | 0.798

C3| 0.400 | 0.756 | 0.756 | 0.500 | 0.674 | 0.674 | 0.865 | 0.790 | 0.776 | 0.644 | 0.807 | 0.820 | 0.897
~—+-C4] 0300 | 0.756 | 0.756 | 0.756 | 0.804 | 0.804 | 0.804 | 0.749 | 0.718 | 0.692 | 0.710 | 0.742 | 0.765

\éﬂ 4 b \6/ ’\8




Messages Passed To and
From All 12 Bit Nodes

Up Down Down Down Up Up Up Down Down Down Up Up Up

Cl 0.900 0.500 0.436 0.372 0.805 0.842 0.874 0.594 0.640 0.656 0.968 0.962 0.959
C2 0500 0.756 0.756 0.436 0.705 0.705 0.906 0.640 0.690 0.630 0.791 0.751 0.798
C3 0.400 0.756 0.756 0.500 0.674 0.674 0.865 0.790 0.776 0.644 0.807 0.820 0.897
C4 0300 0.756 0.756 0.756 0.804 0.804 0.804 0.749 0.718 0.692 0.710 0.742 0.765
C5 0.900 0.500 0.372 0.372 0.759 0.842 0.842 0.611 0.694 0.671 0.976 0.966 0.970
C6 0.900 0.436 0.500 0.756 0.965 0.956 0.874 0.608 0.586 0.643 0.958 0.962 0.952
C7 0.900 0.436 0.500 0.372 0.842 0.805 0.874 0.647 0.628 0.656 0.967 0.969 0.965
C8 0.900 0.436 0.436 0.756 0.956 0.956 0.843 0.611 0.605 0.656 0.963 0.964 0.956
C9 0.900 0.372 0.372 0.500 0.842 0.842 0.759 0.722 0.694 0.703 0.980 0.982 0.981
C10 0.900 0.372 0.500 0.500 0.900 0.842 0.842 0.690 0.614 0.654 0.964 0.974 0.970
Cll1 0.900 0.372 0.436 0.756 0.956 0.943 0.805 0.667 0.608 0.676 0.967 0.974 0.965
Cl2 0.900 0.500 0.372 0.756 0.943 0.965 0.842 0.565 0.642 0.657 0.969 0.957 0.955




Messages Passed To and
From All 12 Bit Nodes

Message Passing

1.000
0.900
0.800
0.700 =2
C3
0.600 e ca
g —*—C5
a ——C7
0.400 — 8
——c9
0.300 C10
Ci1
0.200 C12
0.100
0.000

Up Down Down Down Up Up Up Down Down Down Up Up Up



1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

Up Down Down Down

Up

Up

ore lterations
| 12 Bit Nodes

Up Down Down Down

Up

Up

Up Down Down Down

Up

Up

Up Down Down Down

Up

Up

Up

—e—C1
a2

——C4
—»—C5
——C6
——C7
—=—C8
—=—C9
C10
Cl1
C12




1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

More Interesting Example
All 12 Bit Nodes
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Computation at Bit Nodes

« If estimates of probabilities are statistically
iIndependent you should multiply them.

 But you need to normalize the product. Otherwise
the product is smaller than every single estimate.

 For example, with three independent estimates all
equal to 0.9, the unnormalized product is:

(0.9)3=0.729
where the correct normalized product is:
(0.9)2 /[(0.1)3+(0.9)3] = 0.9986



Derivation of Correct
Normalization

Assume we have 3 independent estimates, p,, p,, and p. from which
we compute the new estimate p’ from the formula:

P’ =Kp,p, P
But the same normalization must hold for (1-p’):
(1-p’) = K(1- p,)(1- py)(1- Pc)
From the first equation (1-p’) =1- K p, p,, P

Setting (1- K p, py P.) equal to K(1- p,)(1- p,)(1- p.) and solving for K
we obtain:

K=1/[(1- pa)(1- pp)(1- p¢) + P4 Py PC]



Assumption of Independence

Note that in our example, parts of the graph looks like:

/| /\

This is called a cycle of length 4.

Cycles cause estimates to be dependent and our combining
formulas are incorrect.

As aresult short cycles should be avoided in the design of
codes.



Computation at Parity Nodes

 When a parity equation involves many bits, an
alternative formulais used.

 Details are omitted here but can be found in the
literature.



Rate of a Regular LDPC Code

Assume a LDPC is designed where:

(1) every bitis in J parity checks, and
(2) every parity check checks K bits.

Since the number of 1’s in a parity check matrix is the same
whether we count by rows or columns, we have

J (# of columns) = K (# of rows)
or J (n) = K (n-k).

Solving for k / n, we have k/n = (1- J /K), the rate of the code.

Higher rate codes can be obtained by puncturing lower rate
codes.




Design of a Parity Matrix for a

Regular LDPC Code

The following procedure was suggested by Gallager. We
Illustrate it for a code with J =3 and K=4.

1. Construct the first n/4 rows as follows:

N >

11110000....0000 T
coooo0o01111....0000 n/4
000000O0O0....1111 l

2. Construct the next n/4 rows by permuting the columns of the
first n/4 rows.

3. Repeat 2 using another permutation of the columns.



Irreqular LDPC Codes

Irregular LDPC codes have a variable number of 1’s in the rows
and in the columns.

The optimal distributions for the rows and the columns are
found by a technique called density evolution.

Irregular LDPC codes perform better than regular LDPC codes.

The basic idea is to give greater protection to some digits and
to have some of the parity equations give more reliable
Information to give the decoding a jump start .



Paper on Irregular LDPC Codes
Luby et al (ISIT 1998)
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Improved Low-Density Parity-Check Codes Using Irregular Graphs
and Belief Propagation

Michael G, Luby* Michael Mitzenmacher M. Amin Shokrollahi Daniel A. Spielman
Tnternational Computer Digital Systems Rasenrch ional Computar D of ]
Science Institute Centar Science Institute MIT.
Batkeley, GA Palo Alto, CA Batkeley, A Cambridge, MA
Email Tubyiesi b Email mi ¥ Email aminticsi.b du Email spi t.0d
Abstract — Wa construct naw familias of low-density Cods Rata 1/
parity-chack codes, which wa call iregulor eodes, When Tef: Degrees
dacodad using ballef propagation, our codas ean eor-
ract mora errors than previously knewn low-density
codes. Our bmproved parformance comas from us- Right Dagroes
ing codes basad on random hipartite graphs, p1o = 010225, pap = 0.
‘haged on tha work of [3]. Pravionsly studlad low- m—"ﬂlm, pag = 002445

density codes have heen derivad from regular bipar-
tita graphs, Initial experimental results for our Irreg-
ular codes suggest that, with Improvemants, irragular
codas may ba abls to mateh turho coda parformatics.

1. INTRODUCTION

Wa hsve construcced new families of low-density oodes,
which wa call irregulor codes. Tha terminology comes from
the fact that the parity-check matrices of our codes yidd
highly itregular bipartite geaphs. Thess codes have sighif-
icantly improved perfsrmanca over previously known codes
of this typa. Using balief propagation, they can corract &
substantially highet mumbet of arrors, nlheit &t the expense
of & slightly slowst tunning time. Purther infsemation ean
‘o found in an extended version of this paper, availahla as
"TR-G7-044 of the Intemational Computer Science Institute in
Bezkdey.

I1. IRREGULAR (RAPHS: INTUITION AND EXAMPLE

Wa offat some iftuition AS to why using itregulsr graphs
should imprava perfrmance, Consider trying to build A regu-
lar low-density code that transmits at a fixed rate. From the
point of view of & massnge node, it i8 best to have high de-
gree, sinea the more information it gets from its chadk nodes,
tha mora aecurately it ean fudge what its correet value should
be. In contrast, fom the poin: of view of a chack node, it
is best to have low degtes, sincs the lower the dagres of B
chack node, tha more valushla the m&rmacmn it can trans-
mit ta its naighhars, Thase must

“Table 1: Sample code parameters.

ey
a6 o 1

8

Figure 1: From loft ta right, rate 1/2 turbo codes, irreg-
ular codes, and regular cades.

R

Thid iuition (which we olBetva it out expatiments) unfoe-
tunataly does not provida elues a3 to how to construct apnro-
priate irregular gmphs. Moraover, becausa belief propagation
is not yet well undarstood mathematically, craating tha proper
itvagular graphs appenrs o daunting challangs. Wa maet this
challanga by using irregular gmphs that hava been provan to
be affective for erasure codes that finction in & similar manner
[2] In the sren of ernsure codes, the mathematiesl fnmewotic

‘ba appropristaly balanced. Pravious woek has shown that
for tegulne graphs, low dagres graphs yield the best patfor-
manes [1]. If one allows irmgular geaphs, however, thara is
signifleantly more exikility in balaneing these competing re-
quirements. Messaga nodes with high degres will tand to their
eotrect valua quickly. Theta nodes then provide good infor-
mation to the check nodes, which subsequently provide better
information to lower degres message nodes. Irregular graph
constructions thus lead to  wave effect, where high degme
message nodas band to gat cosracted Arst, and then messsga
nodes with slightly smaller dagres, and so on down the Lina.

*Parta of this ressarch were done wiile ab Digital Syatems Re-
aearch Conter, Research partially mupported by NEF cperating
grant NCR-9416101,

has been astat d to both dasign irregular geaphs and prove
thair effactivenass.

Wa provida an ezample of the irregular gmphs used in Ta-
ble 1. In the table, A (p4) denctes the fraction of nodes of
dagrea § on tha laft (right) hand sida of the graph. Nota that
givana vector  and p one can construet & graph with (approx-
imately) the correct node fractions for any mumber of nodes.

REFERENCES
[ D. ) © MacKsy and B M. Neal, “Clocd Errar Clarrect-
Coden Based cn Very Sparee Matziees,” available from
ttp://wal.ra.phy.cam.ac.uk/ mackny.
13 M. Luby, M. Miammacher, M. &, Sholcollals, D 4. Splms,
Stacoan, “Practical Loss-Reddient Codes? Proc. 2675
Svms on Theory of Computing, 1997, pp. 150-150.



Paper on Irregular LDPC Codes
Luby et al (ISIT 1998)

e Code Rate v CoB T 15

Left Degress = 044506, 3 = 026704,
Ay = 014836, dir = 007854,
Mgy = 0DADS, g = D.020ES

Right Degress  pr = 035282, s = 0.20648,

¢ Left degl‘eeS pta = 010225, a0 = 018321,
pag = 004179, pyy = 002446

A5 =.44506 As =. 26704
Ag =.14835 A7=. 07854

Table 1: Sample code parameters.

A33=.04046 Ags=. 02055 e
* Right degrees o \ al

P7 =.38282 Pg =. 29548 LnE-m

p19:.10225 Pr0=- 18321 e

‘384:'04179 Pg5—- 02445 L6

Figure 1: From left to right, rate 1/2 turbo codes, irreg-
ular codes, and regular codes,



Empirica Bi-Emror Probabilidy

From MacKay’s Website

a.d
. l-.k_% by Fe=g GF(Z)
.01 L rreg GFi 2 2 L
- L 1"_ ™, ., h
5, A ! :
oool | Y L % \\ b N,
L h o o ',
X ) - Y
i} | ki ; ""-__'-' ,
ool | Y | Y ' h h
- L Il lIII | "l‘... l|I
! | ' .
[ ' | i i
1=0% | l.'l.I ! "
kr=g GF(E| |; R=g GF( 18] Gallil=o '-h
i * Turbo
1=08 |
-4 =02 Q [0 0.4 (8] s] (n =)

Sarl foMaoe= raio d Ei



From MacKay’s Website

The figure shows the performance of various codes with rate 1/4
over the Gaussian Channel. From left to right:

Irreqular low density parity check code over GF(8), blocklength
48000 bits (Davey and MacKay, 1999);

JPL turbo code (JPL, 1996) blocklength 65536;

Regular LDPC over GF(16), blocklength 24448 bits (Davey and
MacKay, 1998);

Irregular binary LDPC, blocklength 16000 bits (Davey, 1999);

M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi and D.A. Spielman's
(1998) irregular binary LDPC, blocklength 64000 bits;

JPL's code for Galileo: a concatenated code based on constraint
length 15, rate 1/4 convolutional code (in 1992, this was the best
known code of rate 1/4); blocklength about 64,000 bits;

Regular binary LDPC: blocklength 40000 bits (MacKay, 1999).



Conclusions

« The inherent parallelism in decoding LDPC codes suggests
their use in high data rate systems.

« A comparison of LDPC codes and turbo codes is complicated
and depends on many issues: e.g., block length, channel
model, etc.

« LDPC codes are well worthwhile investigating. Some issues to
be resolved are:

— Performance for channel models of interest

— Optimization of irregular LDPC codes (for channels of interest).
— Implementation in VLSI.

— Patent issues.




