1. Consider

a. a continuous source with the following probability density function. Construct an optimal 2 bit/sample scalar quantizer for this source.

From notes:

\[b_0 = 0, \quad b_4 = 2. \]

\[
\begin{align*}
 b_j &= \frac{a_j + a_{j+1}}{2} \\
 q_j &= \frac{\int_{b_{j-1}}^{b_j} x f_X(x) \, dx}{\int_{b_{j-1}}^{b_j} f_X(x) \, dx}
\end{align*}
\]

By symmetry, \(b_2 = 1 \).

So what are are

\[b_3 = 2 - b_1. \]

left to compute are \(a_1, b_1, a_2 \).

\[a_1 = \frac{\int_{0}^{b_1} x^2 \, dx}{\int_{0}^{b_1} x \, dx} = \frac{2}{3} b_1, \quad a_3 = \frac{\int_{b_1}^{1} x^2 \, dx}{\int_{b_1}^{1} x \, dx} = \frac{2}{3} \frac{1 - b_1^3}{1 - b_1^2} = \frac{2}{3} \frac{1 + b_1 + b_1^2}{b_1 + 1} \]

However

\[b_1 = \frac{a_1 + a_2}{2} \Rightarrow b_1 = \frac{1}{3} b_1 + \frac{1}{3} \frac{1 + b_1 + b_1^2}{b_1 + 1} \Rightarrow 2b_1(b_1 + 1) = 1 + b_1 + b_1^2 \]

\[\Rightarrow b_1^2 + b_1 - 1 = 0 \]

\[b_1 = \frac{-1 \pm \sqrt{1 + 4}}{2} \Rightarrow b_1 = \frac{\sqrt{5} - 1}{2} \]

\[a_1 = \frac{\sqrt{5} - 1}{3} \quad \text{and} \quad a_2 = \frac{\sqrt{5} - 1}{2} + \frac{\sqrt{5} - 1}{6} \]
b. a source with $m = 5$ symbols occurring with probabilities $\{p_1, p_2, \ldots, p_m\}$ whose first two most likely symbols have been encoded into codewords of lengths 1 and 2 bits each. What are the shortest codewords that can be assigned to the remaining symbols such that the resulting code is instantaneous. What is the minimum average length per symbol, \bar{L}, in terms of $\{p_1, p_2, \ldots, p_5\}$?

(23 points)

From Kraft's Inequality

$$-\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \leq 1$$

\[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \leq 1\]

\[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \leq \frac{1}{4}\]

Smallest integers satisfying this are $l_3 = 3$, $l_4 = l_5 = 4$.

So the average bits/symbol $\bar{L} = p_1 + 2p_2 + 3p_3 + 4(p_4 + p_5)$.

(assume $p_1 \geq p_2 \geq \ldots \geq p_m$; otherwise we order them).
Midterm

1. Consider a source which produces an i.i.d. sequence of symbols from the alphabet \{A, B, C, D, E, F, G\} with probabilities \{0.3, 0.25, 0.15, 0.1, 0.1, 0.05, 0.05\} respectively.

 a. Find binary Huffman code.

 \begin{align*}
 \text{Code} & \quad A & \quad B & \quad C & \quad D & \quad E & \quad F & \quad G \\
 \text{00} & \quad 0.3 & \quad 0.3 & \quad 0.3 & \quad 0.3 & \quad 0.25 & \quad 0.15 & \quad 0.15 \\
 \text{01} & \quad 0.25 & \quad 0.18 & \quad 0.25 & \quad 0.35 & \quad 0.15 & \quad 0.15 & \quad 0.15 \\
 \text{100} & \quad 0.15 & \quad 0.15 & \quad 0.25 & \quad 0.25 & \quad 0.15 & \quad 0.15 & \quad 0.15 \\
 \text{101} & \quad 0.1 \\
 \text{110} & \quad 0.05 \\
 \text{111} & \quad 0.05 \\
 \end{align*}

 b. Compute the average number of binary code symbols per source symbol, and the efficiency of this code.

 \[
 \bar{L} = (0.3 \times 0.25) \times 2 + (0.15 \times 0.1) \times 3 + (0.05 \times 0.05) \times 4 = 2.55.
 \]

 The entropy of the source is

 \[
 H = -0.3 \log 0.3 - 0.25 \log 0.25 - 0.15 \log 0.15 - 0.1 \log 0.1 - 0.1 \log 0.1 - 0.05 \log 0.05 - 0.05 \log 0.05
 \]

 \[
 = 2.528.
 \]

 So the efficiency of the code is \(\frac{H}{\bar{L}} = 99\%\).
2. Consider a source consisting of \(M = 32 \) symbols where symbol \(s_0 \) has a significantly larger probability than all other symbols. If \(s_0 \) is assigned a code word of length 1, what is the maximum number of code words of length 2? Assuming at least one codeword is of length 2 and source symbols \(s_0 \) and \(s_1 \) have the largest probabilities \(p_0 \) and \(p_1 \), what is the minimum average length of the code in terms of \(p_0 \) and \(p_1 \)?

Let the number of length-2 codewords be \(k \). By Kraft's inequality

\[
2^{-1} + k \cdot 2^{-2} \leq 1,
\]

Therefore \(k \leq 2 \). So the maximum is 2.

The minimum average length of the code is attained when only 3 symbols have positive probability. In this case, we assign length 1 to symbol \(s_0 \), length 2 to symbol \(s_1 \), and the third symbol. The corresponding average length of the code is

\[
\bar{L} = p_0 + 2p_1 + 2(1-p_0-p_1) = 2 - p_0.
\]
3. Consider a binary source S with symbols $\{A, B\}$ with $\text{Prob}(B) = p$.

 a. Compute the source entropy.

 $$H(S) = -p \log_2 p - (1-p) \log_2 (1-p)$$

 b. Consider the following variable to fixed length coding scheme:

<table>
<thead>
<tr>
<th>Source Output</th>
<th>Code Word</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>000</td>
</tr>
<tr>
<td>AB</td>
<td>001</td>
</tr>
<tr>
<td>AAB</td>
<td>010</td>
</tr>
<tr>
<td>$AAAB$</td>
<td>011</td>
</tr>
<tr>
<td>$AAAAAB$</td>
<td>100</td>
</tr>
<tr>
<td>$AAAAAAB$</td>
<td>101</td>
</tr>
<tr>
<td>$AAAAAAAB$</td>
<td>110</td>
</tr>
<tr>
<td>$AAAAAAA$</td>
<td>111</td>
</tr>
</tbody>
</table>

 Calculate the average number of binary code digits per source digit.

 The average source symbol length is

 $$\bar{L} = p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p$$

 $$+ 7(1-p)^6p + 7(1-p)^7$$

 $$= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p + 7(1-p)^6$$

 $$= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p + 7(1-p)^6$$

 $$= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p + 7(1-p)^6$$

 $$= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p + 7(1-p)^6$$

 $$= p + 2(1-p)p + 3(1-p)^2p + 4(1-p)^3p + 5(1-p)^4p + 6(1-p)^5p + 7(1-p)^6$$

 $$= 1 + (1-p) + (1-p)^2 + (1-p)^3 + (1-p)^4 + (1-p)^5 + (1-p)^6$$

 $$> \frac{1 - (1-p)^7}{1 - (1-p)}$$

 $$= \frac{1 - (1-p)^7}{p}$$

 The average number of binary code digits per source digit is $\frac{3}{\bar{L}} = \frac{3p}{1 - (1-p)^2}$
c. If \(p \) is close to 0, the source will emit long strings of \(A \)s, separated by \(B \)s. A typical output sequence of the source would be:

\[
\text{AABAABAGBBBAAAAABAB}\text{C}001000010110000101....
\]

Let us consider a new source \(S_2 \) consisting of alphabet \(\{s_0, s_1, \ldots, s_i, \ldots \} \) which emits the symbol \(s_i \) when the original source \(S \) emits a run of \(i \) \(A \)s followed by a \(B \). That is for the above binary output of the original source, the source \(S_2 \) emits the sequence:

\[
S_2s_4s_1s_8s_0s_8s_1...
\]

Find the entropy (base 2) of this new source \(S \). Do not leave your answer in terms of an infinite series but rather evaluate the infinite sum. The answer should be a function of \(p \).

By construction of the new source, we have

\[
P(s_i) = P(A^i B) = (1-p)^i p , \ i = 0, 1, 2, \ldots
\]

The entropy of the new source is

\[
H(S_2) = \sum_{i=0}^{\infty} -p(s_i) \log p(s_i)
\]

\[
= \sum_{i=0}^{\infty} - (1-p)^i p \log [(1-p)^i p]
\]

\[
= -p \log (1-p) \sum_{i=0}^{\infty} (1-p)^i - p \log p \sum_{i=0}^{\infty} (1-p)^i
\]

\[
\text{by hint}
\]

\[
= -p \log (1-p) \cdot \frac{(1-p)}{(1-(1-p))^2} - p \log p \cdot \frac{1}{1-(1-p)}
\]

\[
= \frac{1}{p} \left[-(1-p) \log (1-p) - p \log p \right]
\]

\[
= \frac{1}{p} H(S)
\]

Hint: \(\sum_{i=0}^{\infty} a^i = \frac{1}{1-a} \) for \(a < 1 \), and \(\sum_{i=0}^{\infty} i a^i = \frac{d}{da} \left(\sum_{i=0}^{\infty} a^i \right) = \frac{1}{(1-a)^2} \).
4. Consider a Lempel-Ziv compression algorithm with a window size of 16. Suppose the encoder has already encoded the following text:

MY.BROTHER.TOM.ATE

and is left to encode the remainder of the sentence which reads as

.A.TOMATO

Indicate the sequence of phrases that are encoded. Count the number of bits the remainder of the sentence is encoded into.

<table>
<thead>
<tr>
<th>Code</th>
<th># of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 3, 2)</td>
<td>1+4+2</td>
</tr>
<tr>
<td>(1, 9, 4)</td>
<td>1+4+4</td>
</tr>
<tr>
<td>(1, 8, 2)</td>
<td>1+4+2</td>
</tr>
<tr>
<td>(1, 3, 1)</td>
<td>1+4+1</td>
</tr>
</tbody>
</table>

The number of bits the remainder of the sentence is encoded into is

\[7 + 9 + 7 + 6 = 29.\]
4. Consider a Lempel-Ziv compression algorithm with a window size of 16. Suppose the encoder has already encoded the following text:

```
MY_BROTHER_TOMATE
```

and is left to encode the remainder of the sentence which reads as

```
A_TOMATO
```

Indicate the sequence of phrases that are encoded. Count the number of bits the remainder of the sentence is encoded into.

<table>
<thead>
<tr>
<th>Code</th>
<th># of bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 3, 2)</td>
<td>1 + 4 + 2</td>
</tr>
<tr>
<td>(1, 9, 4)</td>
<td>1 + 4 + 4</td>
</tr>
<tr>
<td>(1, 8, 2)</td>
<td>1 + 4 + 2</td>
</tr>
<tr>
<td>(1, 3, 1)</td>
<td>1 + 4 + 1</td>
</tr>
</tbody>
</table>

The number of bits the remainder of the sentence is encoded into is

\[7 + 9 + 7 + 6 = 29.\]