Solutions to Exercise Set #2

1. Probabilities from a cdf. Let X be a random variable with the cdf shown below.

\[F(x) \]

Find the probabilities of the following events.

(a) $\{X = 2\}$.
(b) $\{X < 2\}$.
(c) $\{X = 2\} \cup \{0.5 \leq X \leq 1.5\}$.
(d) $\{X = 2\} \cup \{0.5 \leq X \leq 3\}$.

Solution:

(a) There is a jump at $X = 2$, so we have

\[
P\{X = 2\} = P\{X \leq 2\} - P\{X < 2\} = F(2) - F(2^-) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}.
\]

(b) $P\{X < 2\} = F(2^-) = \frac{1}{3}$.
(c) since \{X = 2\} and \{0.5 \leq X \leq 1.5\} are two disjoint events,
\[
P(\{X = 2\} \cup \{0.5 \leq X \leq 1.5\}) = P\{X = 2\} + P\{0.5 \leq X \leq 1.5\}
\]
\[
= \frac{1}{3} + F(1.5) - F(0.5^-)
\]
\[
= \frac{1}{3} + \frac{1}{3} - \frac{1}{3} \times 0.5^2
\]
\[
= \frac{7}{12}.
\]

(d) We have
\[
P(\{X = 2\} \cup \{0.5 \leq X \leq 3\}) = P\{0.5 \leq X \leq 3\} - P\{X = 2\}
\]
\[
= F(3) - F(0.5^-)
\]
\[
= \frac{5}{6} - \frac{1}{3} \times 0.5^2
\]
\[
= \frac{3}{4}.
\]

2. Gaussian probabilities. Let \(X \sim N(1000, 400)\). Express the following in terms of the \(Q\) function.

(a) \(P\{0 < X < 1020\}\).

(b) \(P\{X < 1020|X > 960\}\).

Solution: Using the fact that \(\frac{X-\mu}{\sigma} \sim N(0,1)\), thus \(F(x) = \Phi(\frac{x-\mu}{\sigma}) = 1 - Q(\frac{x-\mu}{\sigma})\).

(a) We have
\[
P\{0 < X < 1020\} = Q\left(\frac{0 - 1000}{20}\right) - Q\left(\frac{1020 - 1000}{20}\right) = Q(-50) - Q(1).
\]

(b) We have
\[
P\{X < 1020|X > 960\} = \frac{P\{960 < X < 1020\}}{P\{X > 960\}}
\]
\[
= \frac{Q\left(\frac{960 - 1000}{20}\right) - Q\left(\frac{1020 - 1000}{20}\right)}{Q\left(\frac{960 - 1000}{20}\right)}
\]
\[
= \frac{Q(-2) - Q(1)}{Q(-2)}.
\]
3. **Laplacian.** Let $X \sim f(x) = \frac{1}{2}e^{-|x|}$.

(a) Sketch the cdf of X.

(b) Find $P\{|X| \leq 2 \text{ or } X \geq 0\}$.

(c) Find $P\{|X| + |X - 3| \leq 3\}$.

(d) Find $P\{X \geq 0 \mid X \leq 1\}$.

Solution:

(a) We have

$$F_X(x) = \int_{-\infty}^{x} \frac{1}{2}e^{-|u|} \, du = \begin{cases} \frac{1}{2}e^{x}, & \text{if } x < 0 \\ 1 - \frac{1}{2}e^{-x}, & \text{if } x \geq 0 \end{cases}.$$

![CDF of X](image)

Figure 1: cdf of X

(b) We have

$$P\{|X| \leq 2 \text{ or } X \geq 0\} = P\{X \geq -2\} = 1 - P\{X < -2\} = 1 - \int_{-\infty}^{-2} \frac{1}{2}e^{-|x|} \, dx = 1 - \frac{1}{2}e^{-2}.$$
(c) We have
\[P\{|X| + |X - 3| \leq 3\} = P\{0 \leq X \leq 3\} \]
\[= \int_0^3 \frac{1}{2} e^{-|x|} \, dx \]
\[= \frac{1}{2} - \frac{1}{2} e^{-3}. \]

(d) We have
\[P\{X \geq 0 \mid X \leq 1\} = \frac{P\{0 \leq X \leq 1\}}{P\{X \leq 1\}} = \frac{F_X(1) - F_X(0^-)}{F_X(1)} = \frac{1/2 - 1/2e^{-1}}{1 - 1/2e^{-1}} = \frac{1 - e^{-1}}{2 - e^{-1}}. \]

4. Lognormal distribution. Let \(X \sim N(0, \sigma^2) \). Find the pdf of \(Y = e^X \) (known as the lognormal pdf).

Solution: \(Y = e^X > 0 \) implies \(f_Y(y) = 0 \) if \(y \leq 0 \). For \(y > 0 \)
\[P(Y \leq y) = P(e^X \leq y) = P(X \leq \ln(y)) = F_X(\ln(y)) \]
taking derivative with respect to \(y \),
\[f_Y(y) = \frac{1}{y} f_X(\ln(y)) = \frac{1}{y} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\ln(y))^2}{2\sigma^2}} \quad \text{for} \; y > 0. \]

5. Distance to the nearest star. Let the random variable \(N \) be the number of stars in a region of space of volume \(V \). Assume that \(N \) is a Poisson r.v. with pmf
\[p_N(n) = \frac{e^{-\rho V} (\rho V)^n}{n!}, \quad \text{for} \; n = 0, 1, 2, \ldots, \]
where \(\rho \) is the "density" of stars in space. We choose an arbitrary point in space and define the random variable \(X \) to be the distance from the chosen point to the nearest star. Find the pdf of \(X \) (in terms of \(\rho \)).

Solution: The trick in this problem, as in many others, is to find a way to connect events regarding \(X \) with events regarding \(N \). In our case, for \(x \geq 0 \):
\[F_X(x) = P\{X \leq x\} \]
\[= 1 - P\{X > x\} \]
\[= 1 - P\{\text{No stars within distance} \; x\} \]
\[= 1 - P\{N = 0 \; \text{in sphere centered at origin of radius} \; x\} \]
\[= 1 - e^{-\rho \frac{4}{3} \pi x^3}. \]
Now differentiating, we get
\[f_X(x) = 4\pi \rho x^2 e^{-\rho x^4/\pi}. \]

For \(x < 0 \), both the cdf and the pdf are zero everywhere.

6. **Random phase signal.** Let \(Y(t) = \sin(\omega t + \Theta) \) be a sinusoidal signal with random phase \(\Theta \sim U[-\pi, \pi] \). Find the pdf of the random variable \(Y(t) \) (assume here that both \(t \) and the radial frequency \(\omega \) are constant). Comment on the dependence of the pdf of \(Y(t) \) on time \(t \).

Solution: We can easily see (by plotting \(y \) vs. \(\theta \)) that for \(y \in (-1, 1) \)
\[
P(Y \leq y) = P(\sin(\omega t + \Theta) \leq y) \\
= P(\sin(\Theta) \leq y) \\
= \frac{2 \left(\sin^{-1}(y) + \frac{\pi}{2} \right)}{2\pi} \\
= \frac{\sin^{-1}(y) + 1}{2}.
\]

By differentiating with respect to \(y \), we get
\[f_Y(y) = \frac{1}{\pi \sqrt{1 - y^2}}. \]

Note that \(f_Y(y) \) does not depend on time \(t \), i.e., is time invariant (or stationary) (more on this later in the course).

7. **Quantizer.** Let \(X \sim \text{Exp}(\lambda) \), i.e., an exponential random variable with parameter \(\lambda \) and \(Y = \lfloor X \rfloor \), i.e., \(Y = k \) for \(k \leq X < k + 1, \ k = 0, 1, 2, \ldots \) Find the pmf of \(Y \). Define the quantization error \(Z = X - Y \). Find the pdf of \(Z \).

Solution: For \(k < 0 \), \(p_Y(k) = 0 \). Elsewhere
\[
p_Y(k) = P(Y = k) \\
= P\{k \leq X < k + 1\} \\
= F_X(k + 1) - F_X(k) \\
= \left(1 - e^{-\lambda(k+1)}\right) - \left(1 - e^{-\lambda k}\right) \\
= e^{-\lambda k} - e^{-\lambda(k+1)} \\
= e^{-\lambda k} \left(1 - e^{-\lambda}\right).
\]
Since $Z = X - Y = X - \lfloor X \rfloor$ is the fractional part of X, $f_Z(z) = 0$ for $z < 0$ or $z \geq 1$. For $0 \leq z < 1$, we have
\[
F_Z(z) = P(Z \leq z) = \sum_{k=0}^{\infty} P(k \leq X \leq k + z) \\
= \sum_{k=0}^{\infty} e^{-\lambda k} - e^{-\lambda (k+z)} \\
= \frac{1 - e^{-\lambda z}}{1 - e^{-\lambda}}.
\]
By differentiating with respect to z, we get
\[
f_Z(z) = \frac{\lambda e^{-\lambda z}}{1 - e^{-\lambda}}
\]
for $0 \leq z < 1$.
Refer to Figure 2 for a graphical explanation of the above.
a) \(f_X(x) \) and \(\Delta z \) width bands that go from \(k+z \) to \(k+z+\Delta z \).

b) \(p_Y(k) \) and areas of regions I, II, III, IV, V, etc...
8. *Gambling*. Alice enters a casino with one unit of capital. She looks at her watch to generate a uniform random variable $U \sim \text{unif}[0, 1]$, then bets the amount U on a fair coin flip. Her wealth is thus given by the r.v.

\[
X = \begin{cases}
1 + U, & \text{with probability } 1/2, \\
1 - U, & \text{with probability } 1/2.
\end{cases}
\]

Find the cdf of X.

Solution: First note that $U \in [0, 1]$ with probability one, so $X \in [0, 2]$ with probability one.

Hence, $F_X(x) = 0$ for $x < 0$, and $F_X(x) = 1$ for $x \geq 2$.

We note that $1 - U$ also follows the uniform distribution on $[0, 1]$, while $1 + U$, which is simply a shifted version of U, follows the uniform distribution on $[1, 2]$. Thus, it is intuitively clear that $X \sim \text{unif}[0, 2]$. In order to formally show this, we proceed as follows.

For $0 \leq x < 1$, we have

\[
F_X(x) = P(X \leq x) = P(X \leq x \mid \text{Alice wins }) P(\text{Alice wins }) + P(X \leq x \mid \text{Alice loses }) P(\text{Alice loses })
\]

\[
= \frac{1}{2} \left[P(1 + U \leq x) + P(1 - U \leq x) \right]
\]

\[
= \frac{1}{2} \left[P(U \leq x - 1) + P(U \geq 1 - x) \right]
\]

\[
= \frac{1}{2} \left[0 + (1 - (1 - x)) \right]
\]

(since $x < 1$, we have $x - 1 < 0$ and so the first probability is zero)

\[
= \frac{x}{2}.
\]
For $1 \leq x < 2$, we have

\[
F_X(x) = P(X \leq x) = P(X \leq x | Alice \text{ wins }) P(Alice \text{ wins }) + P(X \leq x | Alice \text{ loses }) P(Alice \text{ loses })
\]

\[
= \frac{1}{2} \left[P(1 + U \leq x) + P(1 - U \leq x) \right]
\]

\[
= \frac{1}{2} \left[P(U \leq x - 1) + P(U \geq 1 - x) \right]
\]

\[
= \frac{1}{2} \left(x - 1 \right) + 1
\]

(since $x \geq 1$, we have $1 - x \leq 0$ and so the second probability is one)

\[
= \frac{x}{2}.
\]

Thus, $F_X(x) = \begin{cases}
0, & x < 0 \\
\frac{x}{2}, & 0 \leq x < 2 \\
1, & x \geq 2.
\end{cases}$

Thus $X \sim \text{unif}[0, 2]$.

9. **Nonlinear processing.** Let $X \sim \text{Unif}[-1, 1]$. Define the random variable

\[
Y = \begin{cases}
X^2 + 1, & \text{if } |X| \geq 0.5 \\
0, & \text{otherwise}
\end{cases}
\]

Find and sketch the cdf of Y.

Solution: First we note that $Y \geq 0$ and thus for $y < 0$, $F_Y(y) = P(Y \leq y) = 0$.

It can be easily shown that $|X| \sim \text{Unif}[0, 1]$.

We have $P(Y = 0) = P(|X| < 0.5) = 1/2$.

9
For $y > 0$, we have

$$F_Y(y) = P(Y \leq y)$$
$$= P(Y = 0) + P(0 < Y \leq y)$$
$$= 1/2 + P(|X| \geq 0.5, X^2 + 1 \leq y)$$
$$= 1/2 + P(|X| \in (0.5, \sqrt{y-1}])$$

$$= \begin{cases}
 1/2, & \sqrt{y-1} \leq 0.5 \\
 1/2 + \sqrt{y-1} - 1/2, & \text{otherwise}
\end{cases}$$

$$= \begin{cases}
 1/2, & 0 < y < 1.25 \\
 \sqrt{y-1}, & 1.25 \leq y < 2.
\end{cases}$$

Collecting the results, we have

$$F_Y(y) = \begin{cases}
 0, & y < 0 \\
 1/2, & 0 \leq y < 1.25 \\
 \sqrt{y-1}, & 1.25 \leq y < 2 \\
 1, & y \geq 2.
\end{cases}$$

The cdf is plotted in Figure 3

10. Geometric with conditions. Let X be a geometric random variable with pmf

$$p_X(k) = p(1-p)^{k-1}, \quad k = 1, 2, \ldots.$$

Find and plot the conditional pmf $p_X(k|A) = P\{X = k|X \in A\}$ if:

(a) $A = \{X > m\}$ where m is a positive integer.

(b) $A = \{X < m\}$.

(c) $A = \{X$ is an even number}$.$

Comment on the shape of the conditional pmf of part (a).

Solution:
Figure 2: a) pdf of X, b) pmf of Y, c) pdf of Z

Figure 3: cdf of Y
(a) We have

\[
P(A) = \sum_{n=m+1}^{\infty} p(1-p)^{n-1}
\]

\[
= \sum_{n=0}^{\infty} p(1-p)^{n+m}
\]

\[
= p(1-p)^m \sum_{n=0}^{\infty} (1-p)^n
\]

\[
= (1-p)^m.
\]

For \(k \leq m \), \(p_X(k|A) = 0 \). For \(k > m \),

\[
p_X(k|A) = P\{X = k|X > m\}
\]

\[
= \frac{P\{X = k\}}{P\{X > m\}}
\]

\[
= \frac{p(1-p)^{k-1}}{(1-p)^m}
\]

\[
= p(1-p)^{k-m-1}.
\]

(b) We have

\[
P(A) = \sum_{n=0}^{m-2} p(1-p)^n
\]

\[
= p \frac{1 - (1-p)^{m-1}}{1 - (1-p)}
\]

\[
= 1 - (1-p)^{m-1}.
\]

For \(k \geq m \) or \(k \leq 0 \), \(p_X(k|A) = 0 \). For \(0 < jk < m \),

\[
p_X(k|A) = P\{X = k|X < m\}
\]

\[
= \frac{P\{X = k\}}{P\{X < m\}}
\]

\[
= \frac{p(1-p)^{k-1}}{1 - (1-p)^{m-1}}.
\]
(c) We have

\[
P(A) = \sum_{n \text{ even}}^\infty p(1 - p)^{n-1}
\]

\[
= \sum_{n' = 0}^\infty p(1 - p)((1 - p)^2)^n'
\]

\[
= \frac{p(1 - p)}{1 - (1 - p)^2}
\]

\[
= \frac{1 - p}{2 - p}.
\]

For \(k \) odd, \(P_X(k|A) = 0 \). For \(k \) even,

\[
p_X(k|A) = \frac{P\{X = k|X \text{ is even}\}}{P\{X = k\}}
\]

\[
= \frac{P\{X = k\}}{P\{X \text{ is even}\}}
\]

\[
= \frac{p(1 - p)^{k-1}}{P(A)}
\]

\[
= p(2 - p)(1 - p)^{k-2}.
\]

Plots are shown in Figure 4. The shape of the conditional pmf in part (a) shows that the geometric random variable is memoryless:

\[
p_X(x|X > k) = p_X(x - k), \quad \text{for } x \geq k.
\]

Note that in all three parts \(p_X(x) \) is defined for all \(x \). This is required.
Figure 4: Plots of the conditional pmf's using $p = \frac{1}{4}$ and $m = 5$.