Solutions to Practice Final Examination (Winter 2017)

There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable as possible. Please justify any claim that you make.

(a) Find the joint pdf $f_{X,Z}(x,z)$ of X and Z.
(b) Find the joint pdf $f_{Z,W}(z,w)$ of Z and W.
(c) Find $E[Z|X]$.
(d) Find $E[X|Z]$.

Solution:

(a) For $z < x$, we have

$$F_{Z|X}(z|x) = P\{Z \leq z \mid X = x\} = 0.$$

For $0 \leq x \leq z$,

$$F_{Z|X}(z|x) = P\{Z \leq z \mid X = x\} = P\{X + Y \leq z \mid X = x\} = P\{Y \leq z - x \mid X = x\} \overset{(a)}{=} P\{Y \leq z - x\} = 1 - e^{-(z-x)},$$

where (a) follows from the independence of X and Y. We therefore have

$$f_{Z|X}(z|x) = \begin{cases} e^{-(z-x)}, & \text{if } 0 \leq x \leq z \\
0, & \text{otherwise}. \end{cases}$$

Therefore,

$$f_{X,Z}(x,z) = \begin{cases} e^{-z}, & \text{if } 0 \leq x \leq z \\
0, & \text{otherwise}. \end{cases}$$
(b) From the previous part, we have, for \(0 \leq x \leq z \),

\[
\begin{align*}
 f_{X|Z}(x|z) &= \frac{f_{X,Z}(x,z)}{f_Z(z)} \\
 &= \frac{f_{X,Z}(x,z)}{\int_{0}^{z} f_{X,Z}(x,z)dx} \\
 &= \frac{1}{z}.
\end{align*}
\]

Thus for \(z \geq 0 \), \(X \mid \{Z = z\} \sim \text{Unif}[0, z] \). We have \(W = X - Y = 2X - Z \). Therefore,

\[
F_{W|Z}(w|z) = P\{W \leq w \mid Z = z\} = P\{2X - Z \leq w \mid Z = z\} = P\{X \leq \frac{z + w}{2} \mid Z = z\} = \begin{cases}
 0, & \text{if } w < -z \\
 \frac{z+w}{2z}, & \text{if } -z \leq w \leq z \\
 1, & \text{if } w > z.
\end{cases}
\]

Thus,

\[
f_{W|Z}(w|z) = \begin{cases}
 \frac{1}{2z}, & \text{if } |w| \leq z \\
 0, & \text{otherwise},
\end{cases}
\]

which leads us to conclude that

\[
f_{Z,W}(z,w) = f_{W|Z}(w|z)f_Z(z) = \begin{cases}
 \frac{1}{2}e^{-z}, & \text{if } |w| \leq z \\
 0, & \text{otherwise}.
\end{cases}
\]

(c) We have

\[
E[Z|X] = E[X + Y \mid X] = X + E[Y|X] = X + E[Y] = X + 1,
\]

where \(E[Y|X] = E[Y] \) since \(X \) and \(Y \) are independent.
(d) From part (b), we have $X \mid \{Z = z\} \sim \text{Unif}[0, z]$. Therefore,

$$E[X|Z] = \frac{Z}{2}.$$

2. **MMSE estimation (30 pts).** Let $X \sim \text{Exp}(1)$ and $Y = \min\{X, 1\}$.

(a) Find $E[Y]$.

(b) Find the estimate $\hat{X} = g(Y)$ of X given Y that minimizes the mean square error $E[(X - \hat{X})^2] = E[(X - g(Y))^2]$, and plot $g(y)$ as a function of y.

(c) Find the mean square error of the estimate found in part (b).

Solution:

(a) We have

$$E[Y] = E[\min\{X, 1\}]$$

$$= \int_0^\infty \min\{x, 1\} e^{-x} dx$$

$$= \int_0^1 xe^{-x} dx + \int_1^\infty e^{-x} dx$$

$$= -xe^{-x} - e^{-x} \bigg|_0^1 + e^{-1}$$

$$= 1 - e^{-1}.$$

(b) We have $g(y) = E[X \mid Y = y]$. For $y < 1$,

$$E[X \mid Y = y] = E[X \mid X = y] = y.$$

For $y = 1$, we have

$$E[X \mid Y = y] = E[X \mid X \geq 1]$$

$$\overset{(a)}{=} E[X] + 1$$

$$= 2,$$

where (a) follows from the memorylessness property of the exponential distribution. Thus,

$$g(y) = \begin{cases}
 y, & 0 \leq y < 1 \\
 2, & y = 1.
\end{cases}$$
The plot of $g(y)$ vs y is shown in Fig. 1.

(c) For $0 \leq y < 1$, $\text{Var}(X \mid Y = y) = 0$. For $y = 1$,

$$\text{Var}(X \mid Y = y) = \text{Var}(X \mid X \geq 1)$$

$$(a) = \text{Var}(X)$$

$= 1,$

where the step (a) follows from the memoryless property. We therefore have

$$\text{MSE} = E[\text{Var}(X \mid Y)]$$

$$= \text{Var}(X \mid Y = 1)P\{Y = 1\}$$

$$= e^{-1}.$$

3. Is the grass always greener on the other side? (30 pts). Let X and Y be two i.i.d. continuous nonnegative random variables with invertible common cdf F, i.e.,

$$P\{X \leq x\} = P\{Y \leq x\} = F(x).$$

(a) Find $P\{X > Y\}$ and $P\{X < Y\}$.

Suppose now that we observe the value of X and make a decision on whether X is larger or smaller than Y.

(b) Find the optimal decision rule $d(x)$ that minimizes the error probability. Your answer should be in terms of the common cdf F.

(c) Find the probability of error for the decision rule found in part (b).

Solution:

(a) By symmetry, $P\{X > Y\} = P\{X < Y\} = 1/2$. Alternatively, let f be the common pdf of X and Y. Then

$$P\{X > Y\} = \int_0^{\infty} P\{X > Y \mid Y = y\} f(y) dy$$

$$= (a) \int_0^{\infty} P\{X > y\} f(y) dy$$

$$= \int_0^{\infty} (1 - F(y)) f(y) dy$$

$$= 1 - \int_0^{\infty} f(y) F(y) dy.$$

Here, (a) follows from the independence of X and Y. We now have, integrating by parts,

$$I := \int_0^{\infty} f(y) F(y) dy$$

$$= F(y)^2\bigg|_0^{\infty} - \int_0^{\infty} F(y) f(y) dy$$

$$= \lim_{y \to \infty} F(y)^2 - I$$

$$= 1 - I,$$

whence $I = 1/2$. Thus,

$$P\{X > Y\} = \frac{1}{2}.$$

By interchanging the roles of X and Y, we conclude that

$$P\{X < Y\} = \frac{1}{2}.$$

Note: We can also compute I by noting that

$$f(y) F(y) = \frac{1}{2} \frac{d}{dy} F(y)^2.$$
(b) Let us define a random variable Z as

$$Z = \begin{cases}
1, & \text{if } X > Y \\
0, & \text{if } X \leq Y.
\end{cases}$$

Then, we have to find a decision rule $d(\cdot)$, such that $P\{d(X) \neq Z\}$ is minimized. We know that this should be the MAP decision rule. We have

$$p_{Z|X}(1|x) = P\{Z = 1 \mid X = x\} = P\{Y < X \mid X = x\} = P\{Y < x \mid X = x\} = F(x).$$

Therefore, $p_{Z|X}(0|x) = 1 - F(x)$, i.e., we should choose $d(x) = 1$ if $F(x) > 1 - F(x)$, i.e., if $x > F^{-1}(1/2)$ (which is the median of X and is unique since F is invertible). Thus the optimal decision rule is given by

$$d(x) = \begin{cases}
1, & \text{if } x > F^{-1}(1/2) \\
0, & \text{if } x \leq F^{-1}(1/2).
\end{cases}$$

In other words, we predict that X is larger than Y if the observed value of X is larger than the median.

(c) We have

$$P\{d(X) \neq Z\} = P\{X > Y, X \leq F^{-1}(1/2)\} + P\{X < Y, X > F^{-1}(1/2)\}$$

$$= P\{Y < X \leq F^{-1}(1/2)\} + P\{F^{-1}(1/2) < X < Y\}$$

$$= \int_0^{F^{-1}(1/2)} \int_0^x f(x)f(y)dydx + \int_{F^{-1}(1/2)}^\infty \int_x^\infty f(x)f(y)dydx$$

$$= \int_0^{F^{-1}(1/2)} f(x)F(x)dx + \int_{F^{-1}(1/2)}^\infty f(x)(1 - F(x))dx$$

$$= \int_0^{F^{-1}(1/2)} f(x)F(x)dx - \int_{F^{-1}(1/2)}^\infty f(x)F(x)dx$$

$$= \frac{1}{2} + \int_0^{F^{-1}(1/2)} F(F^{-1}(1/2)) - \frac{1}{2} \left(1 - (F(F^{-1}(1/2)))^2\right)$$

$$= \frac{1}{2} + \frac{1}{2} \left(1 - \frac{3}{8}\right)$$

$$= \frac{1}{4}.$$
Here, (a) follows from the observation made at the end of part (a).

4. **Sampled Wiener process (60 pts).** Let \(\{W(t), t \geq 0\} \) be the standard Brownian motion. For \(n = 1, 2, \ldots, \) let

\[
X_n = n \cdot W \left(\frac{1}{n} \right).
\]

(a) Find the mean and autocorrelation functions of \(\{X_n\} \).
(b) Is \(\{X_n\} \) WSS? Justify your answer.
(c) Is \(\{X_n\} \) Markov? Justify your answer.
(d) Is \(\{X_n\} \) independent increment? Justify your answer.
(e) Is \(\{X_n\} \) Gaussian? Justify your answer.
(f) For \(n = 1, 2, \ldots, \) let \(S_n = X_n / n \). Find the limit

\[
\lim_{n \to \infty} S_n
\]

in probability.

Solution:

(a) We have

\[
E[X_n] = nE[W(1/n)] = 0.
\]

For \(m, n \in \mathbb{N} \) and \(m \geq n \), we have

\[
E[X_m X_n] = mnE[W(1/m)W(1/n)]
\]

\[
= mn \cdot \min \{1/m, 1/n\}
\]

\[
= mn \cdot \frac{1}{m}
\]

\[
= n.
\]

Thus in general,

\[
E[X_m X_n] = \min \{m, n\}.
\]

(b) No. Since the autocorrelation function is not time-invariant, \(\{X_n\} \) is not WSS.
(c) Yes. Clearly, \(\{X_n\} \) is a Gaussian process (see the solution to part (e)) with mean and autocorrelation functions as found in part (a). Therefore, for integers \(m_1 < m_2 \leq m_3 < m_4 \), we have

\[
\mathbb{E}[(X_{m_2} - X_{m_1})(X_{m_4} - X_{m_3})] = \mathbb{E}[X_{m_2}X_{m_4}] + \mathbb{E}[X_{m_1}X_{m_3}] - \mathbb{E}[X_{m_2}X_{m_3}] - \mathbb{E}[X_{m_1}X_{m_4}]
\]

\[
= \min\{m_2, m_4\} + \min\{m_1, m_3\} - \min\{m_2, m_3\} - \min\{m_1, m_4\}
\]

\[
= m_2 + m_1 - m_2 - m_1
\]

\[
= 0
\]

\[
= \mathbb{E}[X_{m_2} - X_{m_1}]\mathbb{E}[X_{m_4} - X_{m_3}].
\]

Therefore, since \((X_{m_2} - X_{m_1}) \) and \((X_{m_4} - X_{m_3}) \) are jointly Gaussian and uncorrelated, they are independent. Now, for positive integers \(n_1 < n_2 < \cdots < n_k \) for some \(k \), \((X_{n_1}, X_{n_2} - X_{n_1, \ldots, X_{n_k} - X_{n_{k-1}}} \) being a linear transformation of a Gaussian random vector, is itself Gaussian. Moreover, from what we just showed, \((X_{n_1}, X_{n_2} - X_{n_1}, \ldots, X_{n_k} - X_{n_{k-1}}) \) are pairwise independent. Therefore, they are all independent, which implies that \(\{X_n\} \) is independent-increment. This implies Markovity.

(d) Yes. See the solution to part (c).

(e) Yes. For integers \(n_1, n_2, \ldots, n_k \) for any \(k \), we have

\[
\begin{bmatrix}
X_{n_1} \\
X_{n_2} \\
\vdots \\
X_{n_k}
\end{bmatrix} =
\begin{bmatrix}
n_1 & 0 & \cdots & 0 \\
0 & n_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & n_k
\end{bmatrix}
\begin{bmatrix}
W(1/n_1) \\
W(1/n_2) \\
\vdots \\
W(1/n_k)
\end{bmatrix}.
\]

Thus, \([X_{n_1} \cdots X_{n_k}]^T \), being a linear transformation of a Gaussian random vector, is itself a Gaussian random vector. Therefore, \(\{X_n\} \) is Gaussian.

(f) Recall that \(X_n \sim N(0, n) \), which implies that \(X_n/\sqrt{n} \sim N(0, 1) \). Therefore, for any fixed \(\epsilon > 0 \), we have

\[
P\{|S_n| > \epsilon\} = P\{|X_n| > n\epsilon\}
\]

\[
= P\left\{\left|\frac{X_n}{\sqrt{n}}\right| > \epsilon\sqrt{n}\right\}
\]

\[
= 2Q(\epsilon\sqrt{n})
\]

\[
\rightarrow 0,
\]
as \(n \to \infty \). Therefore, \(\lim_{n \to \infty} S_n = 0 \) in probability. Alternatively, note that \(W(0) = 0 \) and \(W(t) \) is continuous with probability 1. Therefore

\[
\lim_{n \to \infty} S_n = \lim_{n \to \infty} W\left(\frac{1}{n}\right) = W(0) = 0.
\]

5. Poisson process (40 pts). Let \(\{N(t), t \geq 0\} \) be a Poisson process with arrival rate \(\lambda > 0 \). Let \(s \leq t \).

(a) Find the conditional pmf of \(N(t) \) given \(N(s) \).

(b) Find \(E[N(t)|N(s)] \) and its pmf.

(c) Find the conditional pmf of \(N(s) \) given \(N(t) \).

(d) Find \(E[N(s)|N(t)] \) and its pmf.

Solution:

(a) Assume \(0 \leq n_s \leq n_t \). By the independent increment property of the Poisson process, we would get

\[
P\{N(t) = n_t|N(s) = n_s\} = P\{N(t) - N(s) = n_t - n_s|N(s) = n_s\}
= P\{N(t) - N(s) = n_t - n_s\}
= e^{-\lambda(t-s)} \frac{\lambda(t-s)^{n_t-n_s}}{(n_t-n_s)!}
\]

for \(n_s = 0, 1, \ldots \) and \(n_t = n_s, n_s + 1, \ldots \). Thus,

\[
N(t)|\{N(s) = n_s\} \sim n_s + \text{Poisson}(\lambda(t-s)).
\]

(b) From part (a), it immediately follows that

\[
E[N(t)|N(s)] = N(s) + \lambda(t - s).
\]

Therefore, the pmf of \(E[N(t)|N(s)] \) is

\[
p_{E[N(t)|N(s)]}(x) = \begin{cases}
 e^{-\lambda s} \frac{(\lambda s)^k}{k!} & \text{if } x = k + \lambda(t - s), \quad k = 0, 1, \ldots \\
 0 & \text{otherwise}
\end{cases}
\]
(c) From part (a), the joint pmf of $(N(t), N(s))$ for $0 \leq n_s \leq n_t$, is
\[
\begin{align*}
P\{N(t) = n_t, N(s) = n_s\} &= P\{N(s) = n_s\}P\{N(t) = n_t | N(s) = n_s\} \\
&= e^{-\lambda_s} \left(\frac{(\lambda s)^{n_s}}{n_s!}\right) e^{-\lambda(t-s)} \left(\frac{(\lambda(t-s))^{n_t-n_s}}{(n_t-n_s)!}\right) \\
&= e^{-\lambda t} \frac{n_t^{n_s}(t-s)^{n_t-n_s}}{n_s!(n_t-n_s)!}.
\end{align*}
\]
Therefore, the conditional pmf of $N(s)|\{N(t) = n_t\}$ is for $n_t \geq n_s \geq 0$
\[
\begin{align*}
P\{N(s) = n_s | N(t) = n_t\} &= \frac{P\{N(s) = n_s, N(t) = n_t\}}{P\{N(t) = n_t\}} \\
&= \left(\frac{e^{-\lambda t} n_t^{n_s}(t-s)^{n_t-n_s}}{n_s!(n_t-n_s)!}\right) \left(\frac{e^{-\lambda t} (\lambda t)^{n_t}}{n_t!}\right)^{-1} \\
&= \binom{n_t}{n_s} \left(\frac{s}{t}\right)^{n_s} \left(1 - \frac{s}{t}\right)^{n_t-n_s}.
\end{align*}
\]
Hence,
\[
N(s)|\{N(t) = n_t\} \sim \text{Binom}\left(n_t, \frac{s}{t}\right).
\]

(d) From part (c), it immediately follows that
\[
E[N(s)|N(t)] = \frac{s}{t} N(t),
\]
and its pmf is
\[
p_{E[N(s)|N(t)]}(x) = \begin{cases}
 e^{-\lambda t} \left(\frac{(\lambda t)^k}{k!}\right) & \text{if } x = \frac{s}{t} k, \quad k = 0, 1, \ldots \\
 0 & \text{otherwise}
\end{cases}
\]

6. Hidden Markov process (60 pts). Let $X_0 \sim N(0, \sigma^2)$ and $X_n = \frac{1}{2} X_{n-1} + Z_n$ for $n \geq 1$, where Z_1, Z_2, \ldots are i.i.d. $N(0, 1)$, independent of X_0. Let $Y_n = X_n + V_n$, where V_n are i.i.d. $\sim N(0, 1)$, independent of $\{X_n\}$.

(a) Find the variance σ^2 such that $\{X_n\}$ and $\{Y_n\}$ are jointly WSS.

Under the value of σ^2 found in part (a), answer the following.

(b) Find $R_{Y}(n)$.

10
(c) Find $R_{XY}(n)$.
(d) Find the MMSE estimate of X_n given Y_n.
(e) Find the MMSE estimate of X_n given (Y_n, Y_{n-1}).
(f) Find the MMSE estimate of X_n given (Y_n, Y_{n+1}).

Solution:

(a) If $\{X_n\}$ is WSS, then $\text{Var}(X_n) = \text{Var}(X_0) = \sigma^2$ for all $n \geq 0$. From the recursive relation, we would get

$$\text{Var}(X_n) = \frac{1}{4}\text{Var}(X_{n-1}) + \text{Var}(Z_n),$$

which implies $\sigma^2 = \frac{4}{3}$.

(b) First, note that for $n \geq 0$,

$$X_{m+n} = \frac{1}{2}X_{m+n-1} + Z_{m+n}$$
$$= \frac{1}{4}X_{m+n-2} + \frac{1}{2}Z_{m+n-1} + Z_{m+n}$$
$$= \ldots$$
$$= \frac{1}{2^n}X_m + \frac{1}{2^{n-1}}Z_{m+1} + \cdots + \frac{1}{2}Z_{m+n-1} + Z_{m+n}.$$

Hence, it follows that

$$R_X(n) = E[X_{m+n}X_n] = 2^{-n}E[X_m^2] = \frac{4}{3}2^{-|n|}.$$

Now we can find the autocorrelation function of $\{Y_n\}$ easily.

$$R_Y(n) = E[Y_{m+n}Y_m]$$
$$= E[(X_{m+n} + V_{m+n})(X_m + V_m)]$$
$$= E[X_{m+n}X_m + X_{m+n}V_m + V_{m+n}X_m + V_{m+n}V_m]$$
$$= R_X(n) + \delta(n)$$
$$= \frac{4}{3}2^{-|n|} + \delta(n)$$

Here $\delta(n)$ denotes the Kronecker delta function, that is,

$$\delta(n) = \begin{cases}
1 & \text{if } n = 0 \\
0 & \text{otherwise.}
\end{cases}$$
(c) The cross correlation function $R_{XY}(n)$ is
\[
R_{XY}(n) = E[X_{m+n}Y_m] \\
= E[X_{m+n}X_m + X_{m+n}V_m] \\
= R_X(n) = \frac{4}{3}2^{-|n|}.
\]

(d) Since X_n and Y_n are jointly Gaussian, we can find the conditional expectation $E[X_n|Y_n]$, which is the MMSE estimate of X_n given Y_n, as follows:
\[
E[X_n|Y_n] = E[X_n] + \frac{\text{Cov}(X_n,Y_n)}{\text{Var}(Y_n)}(Y_n - E[Y_n]) \\
= \frac{R_{XY}(0)}{R_{Y}(0)}Y_n \\
= \frac{4}{7}Y_n.
\]

(e) As in part (d), the MMSE estimate of X_n given (Y_n, Y_{n-1}) is
\[
E[X_n|Y_n, Y_{n-1}] = E[X_n] + \Sigma_{X_n, (Y_n, Y_{n-1})} \Sigma_{(Y_n, Y_{n-1})}^{-1} \left(\begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} - E \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} \right) \\
= \begin{bmatrix} R_{XY}(0) & R_{XY}(1) \\ R_{Y}(0) & R_{Y}(1) \end{bmatrix}^{-1} \begin{bmatrix} R_{Y}(0) & R_{Y}(1) \\ R_{Y}(0) & R_{Y}(1) \end{bmatrix} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} \\
= \begin{bmatrix} 4/3 & 2/3 \\ 7/3 & 2/3 \\ 2/3 & 7/3 \end{bmatrix}^{-1} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} \\
= \begin{bmatrix} 8/15 & 2/15 \end{bmatrix} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} \\
= \frac{8}{15}Y_n + \frac{2}{15}Y_{n-1}.
\]

(f) Since (X_n, Y_n) are jointly WSS, from part (e) it immediately follows that the conditional expectation $E[X_n|Y_n, Y_{n+1}]$ has the same form with $E[X_n|Y_n, Y_{n-1}]$:
\[
E[X_n|Y_n, Y_{n+1}] = \frac{8}{15}Y_n + \frac{2}{15}Y_{n+1}.
\]
1. Additive exponential noise channel (60 pts). A device has two equally likely states $S = 0$ and $S = 1$. When it is inactive ($S = 0$), it transmits $X = 0$. When it is active ($S = 1$), it transmits $X \sim \text{Exp}(1)$. Now suppose the signal is observed through the additive exponential noise channel with output

$$Y = X + Z,$$

where $Z \sim \text{Exp}(2)$ is independent of (X, S). One wishes to decide whether the device is active or not.

(a) Find $f_{Y|S}(y|0)$.
(b) Find $f_{Y|S}(y|1)$.
(c) Find $f_Y(y)$.
(d) Find $p_{S|Y}(0|y)$ and $p_{S|Y}(1|y)$.
(e) Find the decision rule $d(y)$ that minimizes the probability of error

$$P(S \neq d(Y)).$$

(f) Find the corresponding probability of error.

(Hint: Recall that $Z \sim \text{Exp}(\lambda)$ means that its pdf is $f_Z(z) = \lambda e^{-\lambda z}, \ z \geq 0.$)

Solution:

(a) Given $S = 0$, $X = 0$ and thus $Y = Z \sim \text{Exp}(2)$. Hence,

$$f_{Y|S}(y|0) = \begin{cases} 2e^{-2y}, & y \geq 0 \\ 0, & y < 0. \end{cases}$$

(b) Given $S = 1$, $X \sim \text{Exp}(1)$ and Y is the sum of two independent exponential...
tial random variables. Hence,

\[
f_{Y|S}(y|1) = f_{X|S}(y) * f_Z(y) \\
= e^{-y} \mathbb{1}_{\{y \geq 0\}} * 2e^{-2y} \mathbb{1}_{\{y \geq 0\}} \\
= \int_{-\infty}^{\infty} 2e^{-2t} \mathbb{1}_{\{t \geq 0\}} e^{-(y-t)} \mathbb{1}_{\{y-t \geq 0\}} dt \\
= \int_{0}^{y} 2e^{-2t+y} dt \\
= \begin{cases}
2e^{-y}(1-e^{-y}), & y \geq 0 \\
0, & \text{otherwise.}
\end{cases}
\]

(c) We have

\[
f_Y(y) = f_{Y|S}(y|0)P(S = 0) + f_{Y|S}(y|1)P(S = 1) \\
= \frac{1}{2} \left(2e^{-2y} + 2e^{-y} - 2e^{-2y} \right) \\
= e^{-y}, \quad y \geq 0.
\]

Thus, \(Y \sim \text{Exp}(1) \).

(d) We have

\[
p_{S|Y}(0|y) = \frac{f_{Y|S}(y|0)P(S = 0)}{f_Y(y)} \\
= \frac{e^{-2y}}{e^{-y}} \\
= e^{-y}.
\]

We similarly have

\[
p_{S|Y}(1|y) = \frac{f_{Y|S}(y|1)P(S = 1)}{f_Y(y)} \\
= \frac{e^{-y}(1-e^{-y})}{e^{-y}} \\
= 1 - e^{-y}.
\]

(Alternatively, \(p_{S|Y}(1|y) = 1 - p_{S|Y}(0|y) \).)
(e) We have
\[d(y) = \arg \max_{s \in \{0, 1\}} p_{S|Y}(s|y) \]
\[= \begin{cases} 0, & e^{-y} > 1 - e^{-y} \\ 1, & \text{otherwise.} \end{cases} \]

The condition \(e^{-y} > 1 - e^{-y} \) is equivalent to \(y < \ln 2 \), and hence
\[d(y) = \begin{cases} 0, & 0 \leq y < \ln 2 \\ 1, & y \geq \ln 2 \end{cases} \]

(f) We have
\[
P(d(Y) \neq S) = P(d(Y) \neq S, S = 0) + P(d(Y) \neq S, S = 1)
= P(Y \geq \ln 2|S = 0)P(S = 0) + P(Y < \ln 2|S = 1)P(S = 1)
= \frac{1}{2}\left(\int_{\ln 2}^{\infty} f_{Y|S}(y|0)dy + \int_{0}^{\ln 2} f_{Y|S}(y|1)dy \right)
= \frac{1}{2}\left(\int_{\ln 2}^{\infty} 2e^{-2y}dy + \int_{0}^{\ln 2} 2e^{-y}(1 - e^{-y})dy \right)
= \frac{1}{2}\left(e^{-2\ln 2} + 2(1 - e^{-\ln 2}) - (1 - e^{-2\ln 2}) \right)
= \frac{1}{2}\left(\frac{1}{4} + 2 - 1 - 1 + \frac{1}{4} \right)
= \frac{1}{4}\]

2. Brownian bridge (40 pts). Let \(\{W(t)\}_{t=0}^{\infty} \) be the standard Brownian motion (Wiener process). Recall that the process is independent-increment with \(W(0) = 0 \) and
\[W(t) - W(s) \sim N(0, t - s), \quad 0 \leq s < t. \]

In the following, we investigate several properties of the process conditioned on \(\{W(1) = 0\} \).

(a) Find the conditional distribution of \(W(1/2) \) given \(W(1) = 0 \).
(b) Find \(\mathbb{E}[W(t) | W(1) = 0] \) for \(t \in [0, 1] \).
(c) Find \(\mathbb{E}[(W(t))^2 | W(1) = 0] \) for \(t \in [0, 1] \).
(d) Find $E[W(t_1)W(t_2) \mid W(1) = 0]$ for $t_1, t_2 \in [0, 1]$.

Solution:

(a) By the property of a Brownian motion,

$$\begin{bmatrix} W(1/2) \\ W(1) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ 1/2 \\ 1/2 \\ 1 \end{bmatrix} \right).$$

Therefore,

$$E[W(1/2) \mid W(1)] = E[W(1/2)] + \frac{\text{Cov}(W(1/2), W(1))}{\text{Var}[W(1)]} \left(W(1) - E[W(1)] \right)$$

$$= \frac{1}{2} W(1).$$

Also,

$$\text{Var}[W(1/2) \mid W(1)] = \text{Var}[W(1/2)] - \frac{\text{Cov}(W(1/2), W(1))^2}{\text{Var}[W(1)]}$$

$$= \frac{1}{2} - \frac{1}{4}$$

$$= \frac{1}{4}.$$

Thus, $W(1/2) \mid \{W(1) = 0\} \sim \mathcal{N}(0, 1/4)$.

(b) For $t \in [0, 1]$,

$$\begin{bmatrix} W(t) \\ W(1) \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} 0 \\ t \\ t \\ 1 \end{bmatrix} \right).$$

Therefore,

$$E[W(t) \mid W(1)] = E[W(t)] + \frac{\text{Cov}(W(t), W(1))}{\text{Var}[W(1)]} \left(W(1) - E[W(1)] \right)$$

$$= tW(1).$$

Thus, $E[W(t) \mid W(1) = 0] = 0$.

16
(c)

\[
\text{Var}[W(t)|W(1)] = \text{Var}[W(t)] - \frac{\text{Cov}(W(t), W(1))^2}{\text{Var}[W(1)]} = t - t^2.
\]

Thus, \(E[W(t)^2|W(1) = 0] = t(1 - t). \)

(d) For \(0 \leq t_1 \leq t_2 \leq 1, \)

\[
\begin{bmatrix}
 W(t_1) \\
 W(t_2) \\
 W(1)
\end{bmatrix}
\sim \mathcal{N}
\begin{pmatrix}
 0, \\
 t_1 & t_1 & t_1 \\
 t_1 & t_2 & t_2 \\
 t_1 & t_2 & 1
\end{pmatrix}
\]

Hence,

\[
\text{Cov}
\begin{pmatrix}
 [W(t_1)] \\
 [W(t_2)]
\end{pmatrix}
| W(1)
= \text{Cov}
\begin{pmatrix}
 [W(t_1)] \\
 [W(t_2)]
\end{pmatrix}
- \text{Cov}
\begin{pmatrix}
 [W(t_1)], W(1)
\end{pmatrix}
\text{Var}[W(1)]^{-1}\text{Cov}
\begin{pmatrix}
 [W(t_1)], W(1)
\end{pmatrix}^T
= \begin{bmatrix}
 t_1 & t_1 \\
 t_1 & t_2 \\
 t_2 & t_2 \\
\end{bmatrix}
- \begin{bmatrix}
 t_1 \\
 t_1 \\
 t_2 \\
\end{bmatrix}
\begin{bmatrix}
 t_1 & t_2 \\
\end{bmatrix}
= \begin{bmatrix}
 t_1(1 - t_1) & t_1(1 - t_2) \\
 t_1(1 - t_2) & t_2(1 - t_2)
\end{bmatrix}.
\]

This shows that

\[
E[W(t_1)W(t_2)|W(1) = 0] = t_1(1 - t_2)
= \min(t_1, t_2) - t_1t_2.
\]

3. **Convergence of random processes (30 pts).** Let \(\{N(t)\}_{t=0}^\infty \) be a Poisson process with rate \(\lambda \). Recall that the process is independent increment and \(N(t) - N(s), \quad 0 \leq s < t, \) has the pmf

\[
p_{N(t) - N(s)}(n) = \frac{e^{-\lambda(t-s)}(\lambda(t-s))^n}{n!}, \quad n = 0, 1, \ldots.
\]

Define

\[
M(t) = \frac{N(t)}{t}, \quad t > 0.
\]
(a) Find the mean and autocorrelation function of \(\{M(t)\}_{t > 0} \).

(b) Does \(\{M(t)\}_{t > 0} \) converge in mean square as \(t \to \infty \), that is,
\[
\lim_{t \to \infty} E[(M(t) - M)^2] = 0
\]
for some random variable (or constant) \(M \)? If so, what is the limit?

Now consider
\[
L(t) = \frac{1}{t} \int_0^t \frac{N(s)}{s} \, ds, \quad t > 0.
\]

(c) Does \(\{L(t)\}_{t > 0} \) converge in mean square as \(t \to \infty \)? If so, what is the limit?

(Hint: \(\int 1/x \, dx = \ln x + C \), \(\int \ln x \, dx = x \ln x - x + C \), and \(\lim_{x \to 0} x \ln x = 0 \).)

Solution:

(a) We have
\[
E[M(t)] = \frac{E[N(t)]}{t} = \frac{\lambda t}{t} = \lambda.
\]

Also, for \(\tau \geq 0 \), we have
\[
E[M(t)M(t + \tau)] = \frac{E[N(t)N(t + \tau)]}{t(t + \tau)} = \frac{E[N(t)(N(t) + N(t + \tau) - N(t))]}{t(t + \tau)} = \frac{E[N(t)^2] + E[N(t + \tau) - N(t)]E[N(t)]}{t(t + \tau)} \tag{by independent-increment property}
\]
\[
= \frac{\lambda t + \lambda^2 t^2 + \lambda \tau \cdot \lambda t}{t(t + \tau)} = \frac{\lambda + \lambda^2 (t + \tau)}{t + \tau} = \lambda^2 + \frac{\lambda}{t + \tau}.
\]
Thus the autocorrelation function is given by

\[R_M(s, t) = \lambda^2 + \frac{\lambda}{\max(s, t)}. \]

(b) We have

\[
\text{Var}[M(t)] = \mathbb{E}[M(t)^2] - \left(\mathbb{E}[M(t)] \right)^2
\]

\[= R_M(t, t) - \lambda^2 \]

\[= \frac{\lambda}{t}. \]

Thus if we let \(M = \lambda \), we have

\[
\lim_{t \to \infty} \mathbb{E}[(M(t) - \lambda)^2] = \lim_{t \to \infty} \text{Var}[M(t)]
\]

\[= \lim_{t \to \infty} \frac{\lambda}{t} \]

\[= 0. \]

This shows that \(M(t) \to M \) in mean square.

(c) We have

\[
\mathbb{E}[L(t)] = \frac{1}{t} \int_0^t \mathbb{E}[M(s)]ds
\]

\[= \lambda. \]
Also,

\[
\text{Var}[L(t)] = \mathbb{E}[L(t)^2] - \left(\mathbb{E}[L(t)]\right)^2
\]

\[
= \frac{1}{t^2} \int_0^t \int_0^t \mathbb{E}[M(u)M(v)]dudv - \lambda^2
\]

\[
= \frac{1}{t^2} \int_0^t \int_0^t \left(\lambda^2 + \frac{\lambda}{\max(u, v)}\right)dudv - \lambda^2
\]

\[
= \frac{1}{t^2} \int_0^t \int_0^t \frac{\lambda}{\max(u, v)}dudv
\]

\[
= \frac{\lambda}{t^2} \left(\int_0^v \frac{1}{v}du + \int_v^t \frac{1}{u}du\right)dv
\]

\[
= \frac{\lambda}{t^2} \left(1 + \ln \left(\frac{t}{v}\right)\right)dv
\]

\[
= \frac{\lambda}{t^2} \left(t + t \ln t - t \ln t + t\right)
\]

\[
= \frac{2\lambda}{t}.
\]

Thus if we let \(L = \lambda \), we have

\[
\lim_{t \to \infty} \mathbb{E}[(L(t) - L)^2] = \lim_{t \to \infty} \text{Var}[L(t)]
\]

\[
= \lim_{t \to \infty} \frac{2\lambda}{t}
\]

\[
= 0.
\]

This shows that \(L(t) \to L \) in mean square.

4. Random binary waveform (40 pts). Let \(\{N(t)\}_{t=0}^\infty \) be a Poisson process with rate \(\lambda \), and \(Z \) be independent of \(\{N(t)\} \) with \(P(Z = 1) = P(Z = -1) = 1/2 \). Define

\[
X(t) = Z \cdot (-1)^{N(t)}, \quad t \geq 0.
\]

(a) Find the mean and autocorrelation function of \(\{X(t)\}_{t=0}^\infty \).

(b) Is \(\{X(t)\}_{t=0}^\infty \) wide-sense stationary?

(c) Find the first-order pmf \(p_{X(t)}(x) = P(X(t) = x) \).
(d) Find the second-order pmf \(p_{X(t_1),X(t_2)}(x_1, x_2) = P(X(t_1) = x_1, X(t_2) = x_2) \).

(Hint: \(\sum_{k \text{ even}} x^k/k! = (e^x + e^{-x})/2 \) and \(\sum_{k \text{ odd}} x^k/k! = (e^x - e^{-x})/2 \).)

Solution:

(a) Since \(Z \) is independent of the process \(N(t) \), we have

\[
E[X(t)] = E[Z] \cdot E[(-1)^{N(t)}] = 0,
\]

and, for \(\tau \geq 0 \),

\[
E[X(t)X(t + \tau)] = E[Z^2] \cdot E[(-1)^{N(t)+N(t+\tau)}] = E[(-1)^{N(t)+N(t+\tau)}] = \sum_{k=0}^{\infty} (-1)^k \frac{e^{-\lambda \tau} (\lambda \tau)^k}{k!} = \sum_{k=0}^{\infty} e^{-\lambda \tau} \frac{(-\lambda \tau)^k}{k!} = e^{-2\lambda \tau}.
\]

Thus the autocorrelation function is given by

\[
R_X(s, t) = e^{-2\lambda |s-t|}.
\]

(b) Since \(E[X(t)] \) is constant and \(R_X(s, t) \) depends only on \(|s-t|\), \(X(t) \) is wide-sense stationary.

(c) We have

\[
P(X(t) = 1) = P(X(t) = 1|Z = 1)P(Z = 1) + P(X(t) = 1|Z = -1)P(Z = -1)
= \frac{1}{2} \left(P((-1)^{N(t)} = 1) + P((-1)^{N(t)} = -1) \right)
= \frac{1}{2} \left(P(N(t) = \text{even}) + P(N(t) = \text{odd}) \right)
= \frac{1}{2}.
\]

Thus, \(p_{X(t)}(1) = p_{X(t)}(-1) = 1/2 \).
Let \(t_2 \geq t_1 \). Since the process \(N(t) \) is independent of \(Z \) and \((N(t_2) - N(t_1))\) is independent of \(N(t_1) \), we conclude that \(N(t_2) - N(t_1) \) is independent of \((N(t_1), Z)\).

Hence, \(N(t_2) - N(t_1) \) is also independent of \(X(t_1) = Z \cdot (-1)^{N(t_1)} \).

We have

\[
P(X(t_2) = 1|X(t_1) = 1) = P\left(\frac{X(t_2)}{X(t_1)} = 1|X(t_1) = 1\right)
\]
\[
= P((-1)^{N(t_2) - N(t_1)} = 1|X(t_1) = 1)
\]
\[
= P((-1)^{N(t_2) - N(t_1)} = 1)
\]
\[
= P(N(t_2) - N(t_1) = \text{ even })
\]
\[
= \sum_{k \text{ even}} e^{-\lambda(t_2 - t_1)} \frac{(\lambda(t_2 - t_1))^k}{k!}
\]
\[
= e^{-\lambda(t_2 - t_1)} \left(\frac{e^{\lambda(t_2 - t_1)} + e^{-\lambda(t_2 - t_1)}}{2} \right)
\]
\[
= 1 + e^{-2\lambda(t_2 - t_1)}/2.
\]

Similarly,

\[
P(X(t_2) = -1|X(t_1) = -1) = P(N(t_2) - N(t_1) = \text{ even })
\]
\[
= 1 + e^{-2\lambda(t_2 - t_1)}/2, \text{ and}
\]

\[
P(X(t_2) = -1|X(t_1) = 1) = P(X(t_2) = 1|X(t_1) = -1)
\]
\[
= P(N(t_2) - N(t_1) = \text{ odd })
\]
\[
= \sum_{k \text{ odd}} e^{-\lambda(t_2 - t_1)} \frac{(\lambda(t_2 - t_1))^k}{k!}
\]
\[
= e^{-\lambda(t_2 - t_1)} \left(\frac{e^{\lambda(t_2 - t_1)} - e^{-\lambda(t_2 - t_1)}}{2} \right)
\]
\[
= 1 - e^{-2\lambda(t_2 - t_1)}/2.
\]

Thus,

\[
p_{X(t_1), X(t_2)}(x_1, x_2) = \begin{cases}
1 + e^{-2\lambda(t_2 - t_1)}/4, & (x_1, x_2) = (1, 1) \text{ or } (-1, -1) \\
1 - e^{-2\lambda(t_2 - t_1)}/4, & (x_1, x_2) = (1, -1) \text{ or } (-1, 1).
\end{cases}
\]
Finally, if we remove the restriction $t_2 \geq t_1$, the above becomes

$$p_{X(t_1), X(t_2)}(x_1, x_2) = \begin{cases}
\frac{1 + e^{-2\lambda|t_2-t_1|}}{4}, & (x_1, x_2) = (1, 1) \text{ or } (-1, -1) \\
\frac{1 - e^{-2\lambda|t_2-t_1|}}{4}, & (x_1, x_2) = (1, -1) \text{ or } (-1, 1).
\end{cases}$$
1. **Nonlinear and linear MMSE estimation (30 pts).** Let X and Y be two random variables with joint pdf

$$f_{X,Y}(x, y) = \begin{cases} x + y, & 0 \leq x \leq 1, \ 0 \leq y \leq 1, \\ 0, & \text{otherwise.} \end{cases}$$

(a) (10 points) Find the linear MMSE estimator of X given Y.

(b) (10 points) Find the corresponding MSE.

(c) (10 points) Find the MMSE estimator of X given Y. Is it the same as the linear MMSE estimator?

Solution:

(a) The linear MMSE estimator of X given Y has the form

$$\hat{X} = \frac{\mathbb{Cov}(X, Y)}{\text{Var}(Y)}(Y - \mathbb{E}[Y]) + \mathbb{E}[X].$$

$$f_X(x) = \int_0^1 (x + y) dy = xy + \frac{y^2}{2} \bigg|_0^1 = x + \frac{1}{2}.$$

$$\mathbb{E}[X] = \int_0^1 xf_X(x) dx = \int_0^1 x^2 + \frac{x}{2} dx = \frac{x^3}{3} + \frac{x^2}{4} \bigg|_0^1 = \frac{7}{12}.$$

$$\mathbb{E}[X^2] = \int_0^1 x^2 f_X(x) dx = \int_0^1 x^3 + \frac{x^2}{2} dx = \frac{x^4}{4} + \frac{x^3}{6} \bigg|_0^1 = \frac{5}{12}.$$

$$\text{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \frac{5}{12} - \left(\frac{7}{12}\right)^2 = \frac{11}{144}.$$

By the symmetry of $f_{X,Y}(x, y)$, $\mathbb{E}[Y] = \mathbb{E}[X]$ and $\text{Var}(Y) = \text{Var}(X)$.

$$\mathbb{E}[XY] = \int_0^1 \int_0^1 xy(x + y) dx dy = \int_0^1 \int_0^1 x^2 y + xy^2 dx dy = \int_0^1 \frac{x^3 y}{3} + \frac{x^2 y^2}{2} \bigg|_0^1 dy$$

$$= \int_0^1 \frac{y^2}{3} + \frac{y^2}{2} dy = \frac{y^2}{6} + \frac{y^3}{6} \bigg|_0^1 = \frac{1}{3}.$$
\[
\text{Cov}(X, Y) = E[XY] - E[X]E[Y] = \frac{1}{3} - \left(\frac{7}{12} \right)^2 = \frac{48}{144} - \frac{49}{144} = -\frac{1}{144}.
\]

So,
\[
\hat{X} = -\frac{1}{11}(Y - \frac{7}{12}) + \frac{7}{12} = -\frac{1}{11}Y + \frac{7}{11}.
\]

(b) The MSE is given by
\[
\text{MSE} = \text{Var}(X) - \frac{\text{Cov}(X, Y)^2}{\text{Var}(Y)}
\]
so
\[
\text{MSE} = \frac{11}{144} - \frac{(-1/144)^2}{11/144} = \frac{5}{66}.
\]

(c) The pdf of \(X\mid\{Y = y\}\) is
\[
f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_X(x)} = \frac{x + y}{y + \frac{1}{2}}.
\]
\[
\mathbb{E}(X|Y = y) = \int_0^1 x f_{X|Y}(x|y)dx
\]
\[
= \int_0^1 \frac{x + y}{y + \frac{1}{2}} dx
\]
\[
= \int_0^1 \frac{x^2 + xy}{y + \frac{1}{2}} dx
\]
\[
= \left. \frac{x^3 + \frac{x^2 y}{2}}{y + \frac{1}{2}} \right|_0^1
\]
\[
= \frac{1}{3} + \frac{y}{2}
\]
\[
= \frac{2 + 3y}{3 + 6y}.
\]

So, the MMSE estimator is
\[
\mathbb{E}[X|Y] = \frac{2 + 3Y}{3 + 6Y}.
\]

It is different from the linear MMSE estimator.
2. **Convergence (30 pts).** Consider the sequence of i.i.d. random variables X_1, X_2, \ldots with

$$X_i = \begin{cases}
0 & \text{w.p. } \frac{1}{2}, \\
2 & \text{w.p. } \frac{1}{2},
\end{cases}$$

for all $i \geq 1$.

Define the sequence

$$Y_n = \begin{cases}
X_n, & \text{for all } n \text{ w.p. } \frac{1}{3}, \\
\frac{1}{2}X_n, & \text{for all } n \text{ w.p. } \frac{1}{3}, \\
0, & \text{for all } n \text{ w.p. } \frac{1}{3}.
\end{cases}$$

Let

$$M_n = \frac{1}{n} \sum_{i=1}^{n} Y_i.$$

(a) (10 points) Determine the probability mass function (pmf) of Y_n.

(b) (10 points) Determine the random variable (or constant) that M_n converges to (in probability) as n approaches infinity. Justify your answer.

(c) (10 points) Use the central limit theorem to estimate the probability that the random variable M_{84} exceeds $\frac{2}{3}$.

Solution:

(a) $Y_n \sim Y$, where Y has the pmf

$$p_Y(y) = \mathbb{P}(Y=y|Y=X)\mathbb{P}(Y=X) + \mathbb{P}(Y=y|Y=X)\mathbb{P}(Y=X) + \mathbb{P}(Y=y|Y=0)\mathbb{P}(Y=0)$$

$$= p_X(y)\frac{1}{3} + p_X(2y)\frac{1}{3} + p_0(y)\frac{1}{3}$$

$$= \begin{cases}
0 & \text{w.p. } \frac{2}{3}, \\
1 & \text{w.p. } \frac{1}{6}, \\
2 & \text{w.p. } \frac{1}{6}.
\end{cases}$$
(b) \(M_n \) is the sample mean of \(Y_1, Y_2, \ldots, Y_n \). By the weak law of large numbers (WLLN), it converges in probability to \(E[Y] \), where

\[
E[Y] = \sum_{y \in Y} yp_Y(y)
\]

\[
= 0 \cdot \frac{2}{3} + 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6}
\]

\[
= \frac{1}{2}
\]

(c) By the Central Limit Theorem (CLT)

\[
\frac{M_n - E[Y]}{\sigma_Y / \sqrt{n}} \to Z \sim N(0, 1).
\]

\[
E[Y^2] = \sum_{y^2 \in Y} y^2 p_Y(y)
\]

\[
= 0^2 \cdot \frac{2}{3} + 1^2 \cdot \frac{1}{6} + 2^2 \cdot \frac{1}{6}
\]

\[
= \frac{5}{6}.
\]

So,

\[
\text{Var}(Y) = E[Y^2] - (E[Y])^2 = \frac{5}{6} - (\frac{1}{2})^2 = \frac{7}{12}
\]

and

\[
\sigma_Y = \sqrt{\frac{7}{12}}.
\]

\[
P(M_n > x) = P \left(\frac{M_n - E[Y]}{\sigma_Y / \sqrt{n}} > \frac{x - \frac{1}{2}}{\sqrt{7/12n}} \right).
\]

Setting \(n = 84 \) and \(x = \frac{2}{3} \), we get

\[
P(M_n > \frac{2}{3}) \approx P(Z > 2) = Q(2).
\]

3. Poisson Process (40 pts). Let \(\{N(t), t \geq 0\} \) be a Poisson process with arrival rate \(\lambda > 0 \).
(a) (10 points) Let \(T_M \) be the time of the \(M \)-th arrival. Find \(\mathbb{E}[T_M] \) and \(\text{Var}(T_M) \).

(b) (10 points) Let \(s \leq t \). Assume \(k \) arrivals occur in \(t \) seconds, that is \(N(t) = k \). Show that the conditional distribution of \(N(s) \) given \(N(t) = k \) satisfies \(N(s) \mid \{N(t) = k\} \sim \text{Binom}(k, \frac{s}{t}) \).

(c) (10 points) Let \(s \leq t \). Determine the conditional expectation \(\mathbb{E}[N(s) \mid N(t)] \) and give its probability mass function (pmf).

(d) (10 points) Assume \(N(t) = k \). Determine the probability that all \(k \) arrivals occur in the first \(\frac{t}{2} \) seconds.

Solution:

(a) The interarrival times \(X_1, X_2, \ldots X_M \) are i.i.d. \(\text{Exp}(\lambda) \) random variables, with mean \(1/\lambda \) and variance \(1/\lambda^2 \). Now,

\[
T_M = \sum_{i=1}^{M} X_i.
\]

Therefore, by independence, \(\mathbb{E}[T_M] = M/\lambda \) and \(\text{Var}(T_M) = M/\lambda^2 \).

(b) We can write

\[
P(N(s) = j \mid N(t) = k) = \frac{P(N(s) = j, N(t) = k)}{P(N(t) = k)}
= \frac{P(N(s) = j, N(t) - N(s) = k - j)}{P(N(t) = k)}
\]

\[\overset{(a)}{=} \frac{P(N(s) = j)P(N(t) - N(s) = k - j)}{P(N(t) = k)}
= \frac{(\lambda s)^j}{j!} e^{-\lambda s} \frac{(\lambda(t-s))^{k-j}}{(k-j)!} e^{-\lambda(t-s)} / \frac{\lambda^k}{k!}
\]

\[= \frac{k!}{j!(k-j)!} \frac{s^j}{t^k} \left(1 - \frac{s}{t} \right)^{k-j}
= \binom{k}{j} \left(\frac{s}{t} \right)^j \left(1 - \frac{s}{t} \right)^{k-j}
\]

where \((a)\) follows from the independent increment property.

So, \(N(s) \mid \{N(t) = k\} \sim \text{Binom}(k, \frac{s}{t}) \).
(c) Since \(N(s) \mid \{N(t) = k\} \sim \text{Binom}(k, \frac{s}{t}) \),

\[
E[N(s) \mid N(t) = k] = k \left(\frac{s}{t} \right).
\]

Therefore,

\[
E[N(s) \mid N(t)] = N(t) \left(\frac{s}{t} \right).
\]

The pmf is given by

\[
p_{E[N(s) \mid N(t)]}(x) = \begin{cases} \frac{(\lambda t)^k}{k!} e^{-\lambda t} & \text{if } x = k \left(\frac{s}{t} \right), k \geq 0, \\ 0 & \text{otherwise.} \end{cases}
\]

(d) We have that

\[
P(N(s) = k \mid N(t) = k) = \binom{k}{k} \left(\frac{s}{t} \right)^k = \left(\frac{s}{t} \right)^k.
\]

So,

\[
P(N \left(\frac{t}{2} \right) = k \mid N(t) = k) = \left(\frac{1}{2} \right)^k.
\]

4. Moving Average Process (40 pts). Let \(Z_0, Z_1, Z_2, \ldots \) be i.i.d. \(\sim \mathcal{N}(0, 1) \). Let \(Y_n = Z_{n-1} + Z_n \) for \(n \geq 1 \).

(a) (10 points) Find the mean function and autocorrelation function of \(\{Y_n\} \).

(b) (5 points) Is \(\{Y_n\} \) wide-sense stationary? Justify your answer.

(c) (10 points) Is \(\{Y_n\} \) Gaussian? Justify your answer.

(d) (5 points) Is \(\{Y_n\} \) strict-sense stationary? Justify your answer.

(e) (10 points) Is \(\{Y_n\} \) Markov? Justify your answer. [Hint: Compare \(E(Y_3 \mid Y_1, Y_2) \) to \(E(Y_3 \mid Y_2) \).]

Solution:

(a) We have

\[
E[Y_n] = E[Z_{n-1}] + E[Z_n] = 0, \ \forall n.
\]
From the properties of \(\{Z_i\} \), we get

\[
R_Y(m, n) = E[Y_m Y_n] \\
= E[(Z_{m-1} + Z_m)(Z_{n-1} + Z_n)] \\
= E[Z_{m-1}Z_{n-1}] + E[Z_{m-1}Z_n] + E[ZmZ_{n-1}] + E[ZmZ_n] \\
= \begin{cases}
2, & m = n \\
1, & |m - n| = 1 \\
0, & \text{otherwise}.
\end{cases}
\]

(b) \(E[Y_n] \) and \(R_Y(m, n) \) are both time-invariant, in the sense that \(E[Y_n] \) does not depend on \(n \) and \(R_Y(m, n) \) depends only on \(|m - n| \).

Therefore \(\{Y_n\} \) is wide-sense stationary (WSS).

(c) \((Y_1, \ldots, Y_n)\) is a linear transform of the Gaussian random vector \((Z_1, \ldots, Z_n)\).

Therefore \(\{Y_n\} \) is a Gaussian random process.

(d) Since \(\{Y_n\} \) is Gaussian and WSS, it is strict-sense stationary (SSS).

(e) The process is Gaussian, so the conditional expectation is the linear MMSE estimator.

\[
E[Y_3|Y_1, Y_2] = \Sigma_{XY}^\top \Sigma_{Y_1Y_2}^{-1} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \\
= \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}^{-1} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \\
= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} \\
= \frac{1}{3}(2Y_2 - Y_1).
\]

On the other hand,

\[
E[Y_3|Y_2] = \frac{\text{Cov}(Y_3, Y_2)}{\text{Var}(Y_2)} Y_2 = \frac{1}{2} Y_2 \neq E[Y_3|Y_1, Y_2].
\]

This means that \(f_{Y_3|Y_1,Y_2}(y_3|y_1, y_2) \neq f_{Y_3|Y_2}(y_3|y_2) \), so the process is not Markov.
5. **WSS process through linear filter (40 pts).** Let \(Y(t) \) be a short-term integration of a WSS process \(X(t) \):

\[
Y(t) = \frac{1}{T} \int_{t-T}^{t} X(u) du.
\]

The frequency response \(H(f) \) of this linear integration system is

\[
H(f) = e^{-j\pi fT} \frac{\sin(\pi fT)}{\pi fT}.
\]

Suppose the input \(X(t) \) has mean \(\mathbb{E}[X(t)] \) and autocorrelation function

\[
R_X(\tau) = \begin{cases}
1 - \frac{|	au|}{T}, & |\tau| \leq T \\
0, & \text{otherwise}
\end{cases}
\]

(a) (10 points) Determine the constant \(a \) such that \(\mathbb{E}[Y(t)] = a \mathbb{E}[X(t)] \).

(b) (10 points) Find \(S_Y(f) \).

(c) (10 points) Find \(R_Y(\tau) \). (You can leave your answer in the form of a convolution.)

(d) (10 points) Determine explicitly the average power of the output \(\mathbb{E}[Y^2(t)] \).

Hint: You may use the transform pair \(R_X(\tau) \leftrightarrow T \left(\frac{\sin(\pi fT)}{\pi fT} \right)^2 \) and Fourier Transform relationships from the tables provided.

Solution:

(a) We have

\[
\mathbb{E}[Y(t)] = H(0) \mathbb{E}[X(t)].
\]

\[
H(0) = e^{-j\pi fT} \frac{\sin(\pi fT)}{\pi fT} \bigg|_{f=0} = 1.
\]

So,

\[
\mathbb{E}[Y(t)] = \mathbb{E}[X(t)].
\]

(b) Since

\[
S_Y(f) = |H(f)|^2 S_X(f),
\]

we have

\[
S_X(f) = \mathcal{F}\{R_X(\tau)\} = T \left(\frac{\sin(\pi fT)}{\pi fT} \right)^2.
\]
where $\mathcal{F}(\cdot)$ denotes Fourier Transform. Also,

$$|H(f)|^2 = \left(\frac{\sin(\pi f T)}{\pi f T}\right)^2.$$

Therefore,

$$S_Y(f) = T \left(\frac{\sin \pi f T}{\pi f T}\right)^4.$$

(c) We have that

$$R_Y(\tau) = \mathcal{F}^{-1}\{S_Y(f)\}$$

$$= \mathcal{F}^{-1}\left\{ T \left(\frac{\sin \pi f T}{\pi f T}\right)^4 \right\}$$

$$= \frac{1}{T} \mathcal{F}^{-1}\left\{ T \left(\frac{\sin \pi f T}{\pi f T}\right)^2 \right\}^2$$

$$= \frac{1}{T} R_X(\tau) * R_X(\tau)$$

$$= \frac{1}{T} \int_{-\infty}^{\infty} R_X(s) R_X(\tau - s) ds$$

where (a) follows from the Time Convolution property of the Fourier Transform.

Alternatively, another approach is to write

$$R_Y(\tau) = h(\tau) * R_X(\tau) * h(-\tau)$$

where $h(\tau)$ is the impulse response of the linear integrator.

In particular,

$$h(\tau) = \frac{1}{T} u(\tau - T)$$

where $u(\tau)$ is the unit step function.

Now,

$$h(\tau) * h(-\tau) = \frac{1}{T} R_X(\tau)$$

so, again,

$$R_Y(\tau) = \frac{1}{T} R_X(\tau) * R_X(\tau).$$
(d) We have
\[E[Y^2(t)] = R_Y(0) \]
and
\[R_Y(0) = \frac{1}{T} R_X(\tau) * R_X(\tau) \]
\[= \frac{1}{T} \int_{-\infty}^{\infty} R_X(s) R_X(-s) ds \]
\[= \frac{1}{T} \int_{-\infty}^{\infty} \left(1 - \frac{|s|}{T}\right)^2 ds \]
\[= \frac{2}{T} \int_{0}^{\infty} \left(1 - \frac{s}{T}\right)^2 ds \]
\[= \frac{2}{T} \int_{0}^{\infty} \left(1 - \frac{2s}{T} + \frac{s^2}{T^2}\right) ds \]
\[= \frac{2}{T} \left(s - \frac{s^2}{T} + \frac{s^3}{3T^2}\right) \bigg|_{0}^{T} \]
\[= \frac{2}{T} \left(T - \frac{T^2}{T} + \frac{T^3}{3T^2}\right) \]
\[= \frac{2}{3} \]

6. Optimal linear estimation (20 pts). Let \(X(t) \) be a zero-mean WSS process with autocorrelation function
\[R_X(\tau) = e^{-|\tau|}. \]

(a) (10 points) Find the MMSE estimator for \(X(t) \) of the form
\[\hat{X}(t) = aX(t - t_1) + bX(t - t_2), \]
where \(t_1 = t_0 \) and \(t_2 = 2t_0 \), where \(t_0 > 0 \).

(b) (10 points) Find the MSE of this estimator.

Solution:

(a) We use the orthogonality principle to determine the coefficients \(a \) and \(b \).

Once could also note that, because the process is zero-mean, the linear MMSE of \(X(t) \) given the random vector \(X(t - t_0), X(t - 2t_0) \) will be of
this form. Then one could find the linear MMSE estimator using the
techniques developed for that.

By the orthogonality principle,

\[E[(X(t) - \hat{X}(t))X(t - t_1)] = 0. \]
\[E[(X(t) - \hat{X}(t))X(t - t_2)] = 0. \]

Therefore,

\[E[(X(t) - aX(t - t_0) - bX(t - 2t_0))X(t - t_0)] = 0. \]
\[E[(X(t) - aX(t - t_0) - bX(t - 2t_0))X(t - 2t_0)] = 0. \]

This means

\[E[X(t)X(t - t_0)] - aE[X(t - t_0)X(t - t_0)] - bE[X(t - 2t_0)X(t - t_0)] = 0 \]

or \(R_X(t_0) - aR_X(0) - bR_X(-t_0) = 0. \)

Similarly,

\[E[X(t)X(t - 2t_0)] - aE[X(t - t_0)X(t - 2t_0)] - bE[X(t - 2t_0)X(t - 2t_0)] = 0 \]

or \(R_X(2t_0) - aR_X(t_0) - bR_X(0) = 0. \)

This gives a system of 2 linear equations for \(a \) and \(b \):

\[
\begin{bmatrix}
R_X(0) & R_X(-t_0) \\
R_X(t_0) & R_X(0)
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix} =
\begin{bmatrix}
R_X(t_0) \\
R_X(2t_0)
\end{bmatrix}.
\]

From the definition of \(R_X(\tau) \), this becomes

\[
\begin{bmatrix}
1 & e^{-|t_0|} \\
e^{-|t_0|} & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix} =
\begin{bmatrix}
e^{-|t_0|} \\
e^{-2|t_0|}
\end{bmatrix}.
\]

Solving, either by direct observation from the first equation or by inverting
the \(2 \times 2 \) matrix, we get

\[a = e^{-|t_0|}, \ b = 0. \]

Therefore, noting that \(t_0 > 0 \), we have

\[\hat{X}(t) = e^{-t_0}X(t - t_0). \]
(b) The MSE is given by

$$E[(X(t) - \hat{X}(t))^2] = E[(X(t) - \hat{X}(t))X(t)] - E[(X(t) - \hat{X}(t))\hat{X}(t)]$$

$$\equiv E[(X(t) - \hat{X}(t))X(t)] + 0$$

$$= E[X^2(t)] - E[\hat{X}(t)X(t)]$$

$$= R_X(0) - E[e^{-|t_0|}X(t - t_0)X(t)]$$

$$= R_X(0) - e^{-|t_0|}R_X(-t_0)$$

$$= 1 - e^{-2|t_0|}$$

where (a) uses the orthogonality of the estimation error and the estimate. Since $t_0 > 0$, we have

$$MSE = 1 - e^{-2t_0}$$