Hypothesis
- Show To Q 5
- Mention Review

There
- May Be Vars Or A Sum Of These Vars
- Gaussian Random Variable

Mean & Var Of A Sum Of RVs

Let \(X = \{ x_1, x_2, \ldots, x_n \} \)

\[
\]

\[
\text{Var}(Y) = \text{Var}(Y|X) + \text{Var}(X) + 2 \sum \text{Cov}(X_i, X)
\]

If \(X \) \& \(Y \) Are Uncorrelated, Then \(\text{Var}(Y) = \sum \text{Var}(X_i) \)

Ex: A General RV

Let \(X: x_1, x_2, \ldots, x_n \) Be iid B(\(n, p \)) \& \(Y: \frac{1}{n} \sum x_i \)

\[
E(Y) = \frac{1}{n} \sum E(X_i) = np
\]

\[
\text{Var}(Y) = \frac{1}{n^2} \sum \text{Var}(X_i) + np(1-p)
\]

Q: How: Same as Previous Then This Here Is A Binomial Can Be A Maximum

Let \(N \) Be The # Of Trials Who Get Their Own Hat

Find \(E[N] + \text{Var}(N) \)

Let \(X_i \sim \) Geometric

\(\{ 0, \text{Otherwise} \} \)

Thus, \(N = \sum_{i=1}^{\infty} X_i \), Hence \(E[N] = \sum_{i=1}^{\infty} E[X_i] = \frac{1}{p} \cdot 1 \)

\(\text{(Exponential Summation) \#} \)

\[
E[(X_1 - E[X_1])^2] = E[X_1] + E[X_1] = E[0] = E[
\]

\(\text{Var}(N) \) Consider \(\text{Var}(X_i) = \frac{1}{p} \cdot \frac{1}{(1-p)^2} \)

\[E[X_i] = \frac{1}{(1-p)^2} \]

\[\text{Var}(X_i) = \frac{1}{p} \cdot \frac{1}{(1-p)^2} \]

\[
\text{Cov}(X_i, X_j) = \begin{cases} \frac{1}{p} & i=j \\ 0 & i \neq j \end{cases}
\]

\[
E[X_i^2] = \frac{1}{p} \cdot \frac{1}{(1-p)^2} + \frac{1}{p}
\]

\[
\text{Var}(N) = \sum_{i=1}^{\infty} \text{Var}(X_i) + 2 \sum_{i=1}^{\infty} \sum_{j=i+1}^{\infty} \text{Cov}(X_i, X_j) \cdot (\frac{1}{2}) + \frac{1}{2} \cdot 1
\]

Ex: (b) Common Collector's Problem

Since A Fails On 1st Roll Then Retry Until Each Of The #s / Through C, Amies At Least Once Let \(N \) Be The # Of Rolls. Find \(E[N] \)

Let \(X_i \) Be The # Of Rolls Needed To Obtain The 1st New #
\[E[N] = \sum_{n=1}^{\infty} \frac{E[X_n]}{n^2} \]

\[E[X_n] = \frac{1}{n} \quad \text{Geometric} \left(\frac{1}{n} \right) \]

\[E[X_1] = \frac{1}{1} \quad \text{Geometric} \left(\frac{1}{1} \right) \]

\[E[X_2] = \frac{1}{2} \quad \text{Geometric} \left(\frac{1}{2} \right) \]

\[E[X_3] = \frac{1}{3} \quad \text{Geometric} \left(\frac{1}{3} \right) \]

\[E[X_4] = \frac{1}{4} \quad \text{Geometric} \left(\frac{1}{4} \right) \]

\[E[X_5] = \frac{1}{5} \]

\[E[N] = \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} - 1 \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} - 1 \]

\[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} - 1 \]

Ex. 3: Spaghetti

We have a bowl of Spaghetti Strands. We add in 2 (or more) strands each time. The process is continued until there are no ends left.

\[\text{Let } N \text{ be the number of strands. Find } E[N] \]

No Matter How The Pieces Are Cut, There Are Exactly 15 Strands Or Fewer, 16 Ends.

\[\text{Let } X_n = \begin{cases} 1 & \text{if no end is cut} \\ 0 & \text{if end is cut} \end{cases} \]

\[\text{Let } \{X_n\} \text{ be a sequence of random variables.} \]

\[E[X] = \sum_{n=1}^{\infty} \frac{1}{2^n} \]

\[E[X_1] = \frac{1}{2} \]

\[E[N] = \sum_{n=1}^{\infty} \left(\frac{1}{n} \right) = \frac{\pi^2}{6} - 1 \]

\[\frac{\pi^2}{6} - 1 \]

\[\frac{\pi^2}{6} - 1 \]

Generalizing Sum Of N

1. **Linear Transformation Of A RV**

\[\text{Let } X_1, X_2, \ldots, X_n \text{ be a RV of } M_n \text{ and } \text{ Cov}(M) \text{, } \text{ Let } A \text{ be a matrix. Then } \text{ if } X = A X \text{ is a linear transformation of } X. \]

\[E(X) = \sum_{i=1}^{n} A_i = \text{ a constant value} \]

Then \[Y = \sum_{i=1}^{n} X_i = Y = A X \]

\[E(Y) = \sum_{i=1}^{n} A_i \text{ is calculated by } \]

\[A \text{ is a constant matrix, } \text{ and } M = \sum_{i=1}^{n} X_i \]

\[\text{Ex. 4: Add All Elements Of } A \]

\[\text{of } \text{Var}(M) = \sum_{i=1}^{n} \text{ Cov}(X_i) \text{ is added to } \sum_{i=1}^{n} \text{ Var}(X_i) \]

\[\text{For } A \text{ with diagonal elements } A_{ii} \]

\[A_{ii} \text{ is a diagonal matrix, } \text{ and } \sum_{i=1}^{n} A_{ii} \text{ is added to } \sum_{i=1}^{n} \text{ Var}(X_i) \]

\[\sum_{i=1}^{n} A_{ii} = \text{ a diagonal matrix} \]

\[\text{and } \sum_{i=1}^{n} \text{ Var}(X_i) \text{ is added to } \]

\[\text{when } A \text{ is a diagonal matrix, } \text{ and } M \text{ is a scalar.} \]

\[\text{Ex. 4: Add All Elements Of } A \]

\[\text{of } \text{Var}(M) = \sum_{i=1}^{n} \text{ Cov}(X_i) \text{ is added to } \sum_{i=1}^{n} \text{ Var}(X_i) \]

\[\text{For } A \text{ with diagonal elements } A_{ii} \]

\[A_{ii} \text{ is a diagonal matrix, } \text{ and } \sum_{i=1}^{n} A_{ii} \text{ is added to } \sum_{i=1}^{n} \text{ Var}(X_i) \]

\[\sum_{i=1}^{n} A_{ii} = \text{ a diagonal matrix} \]

\[\text{and } \sum_{i=1}^{n} \text{ Var}(X_i) \text{ is added to } \]

\[\text{when } A \text{ is a diagonal matrix, } \text{ and } M \text{ is a scalar.} \]

\[\sum_{i=1}^{n} A_{ii} = \text{ a diagonal matrix} \]

\[\text{and } \sum_{i=1}^{n} \text{ Var}(X_i) \text{ is added to } \]

\[\text{when } A \text{ is a diagonal matrix, } \text{ and } M \text{ is a scalar.} \]
\[E[Y] = E[AX] = AE[X] + AM \]

\[E[(X - E[1])(X - E[1])^T] = E[(A(X - E[1]))(A(X - E[1]))^T] = \sum \left(E[A(X - E[1])(X - E[1])^T] \right) = AE[E(A)(E - E)^T]A^T + A \Sigma A^T \]

The variance of vector notation \(\Sigma\) is not shown!

Condition 1

Given \(AX \)

<table>
<thead>
<tr>
<th>(X \times x \times \ldots \times x)^T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 \times \Sigma > 0 ??</td>
</tr>
<tr>
<td>(0 + \Sigma > 0)</td>
</tr>
<tr>
<td>(\Sigma > 0)</td>
</tr>
</tbody>
</table>

*Verify that the Mean is consistent with the Form \(E[A] \) is a function of \(m \) and \(\Sigma \)!

\[\text{Normal: } X \sim N(\mu, \Sigma) \]

Theorem

1. \(E[X] = \mu + \Sigma x^T \)
2. **Univariate** \(E \times \text{Normal} \Rightarrow \text{INDEPENDENT} \)

Special Case: If \(X \sim (0, 0)^T \), then \(X, x, \ldots \times x \) are i.i.d. \(N(\mu, \Sigma) \) (given Normal-Gaussian RV)

Proof: Let a Characteristic Function of a Random Vector \(X \): A Cov Eq. of A Gaussian RV

Premise: Let \(A \), a Characteristic Function of a Random Vector \(X \): A Cov Eq. of A Gaussian RV

Premise: Given \(X \sim (0, 0)^T \), then \(X, x, \ldots \times x \) are i.i.d. \(N(\mu, \Sigma) \) (given Normal-Gaussian RV)

Premise: Let \(x \sim (0, 0)^T \), then \(x, x, \ldots \times x \) are i.i.d. \(N(\mu, \Sigma) \) (given Normal-Gaussian RV)

Premise: Let \(E[X] = \mu + \Sigma x^T \), then \(E \times \text{Normal} \Rightarrow \text{INDEPENDENT} \)

Premise: Let \(E[X] = \mu + \Sigma x^T \), then \(E \times \text{Normal} \Rightarrow \text{INDEPENDENT} \)

Premise: Given \(X \sim (0, 0)^T \), then \(X, x, \ldots \times x \) are i.i.d. \(N(\mu, \Sigma) \) (given Normal-Gaussian RV)

Premise: Let \(\Sigma > 0 \), then \(\Sigma > 0 \)

Premise: Let \(\Sigma > 0 \), then \(\Sigma > 0 \)