Probability space \((\Omega, \mathcal{F}, P) \):

- Sample space \(\Omega \)
- Set of events \(\mathcal{F} \)
- Probability measure \(P \):

\[P : \mathcal{F} \to \mathbb{R} \]

Satisfies the (Kolmogorov) axioms of probabilities:

1. \(P(A) \geq 0 \) for all \(A \in \mathcal{F} \)
2. \(P(\Omega) = 1 \)
3. Countable additivity: If \(A_1, A_2, \ldots \in \mathcal{F} \) are disjoint (i.e., \(A_i \cap A_j = \emptyset \) for all \(i \neq j \)),
 \[P\left(\bigcup_{i=1}^{\infty} A_i \right) = \sum_{i=1}^{\infty} P(A_i) \]

Basic laws of probability:

1. \(P(A^c) = 1 - P(A) \)
2. If \(A \subseteq B \), then \(P(A) \leq P(B) \)
3. \(P(A \cup B) = P(A) + P(B) - P(A \cap B) \)
4. \(P(A \cup B) \leq P(A) + P(B) \)
(4) Union of events bound:

\[P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i) \]

(5) Law of total probability: Let \(A_1, A_2, \ldots \) partition \(\Omega \) (i.e., \(A_1, A_2, \ldots \) be disjoint and \(\bigcup_{i=1}^{\infty} A_i = \Omega \)). Then

\[P(B) = \sum_{i=1}^{\infty} P(A_i \cap B) \]

\[\Omega \]

\[A_1 \]

\[A_2 \]

\[A_3 \]

\[A_4 \]

\[A_5 \]

\[A_6 \]

\[A_7 \]

\[B \]

\[\Omega \]

Examples

(1) Flip a coin: \(\Omega = \{H, T\} \), \(\mathcal{F} = 2^\Omega = \{\emptyset, \{H\}, \{T\}, \{H, T\}\} \)

\[P(\emptyset) = 0, \quad P(\{H\}) = p, \quad P(\{T\}) = 1-p, \quad P(\Omega) = 1 \]

The coin has "bias" \(p \)

(2) Flip a coin twice: \(\Omega = \{H, T\} \times \{H, T\} \)

\[\mathcal{F} = 2^\Omega \]

\[P(\emptyset) = 0, \quad P(\{(H, H)\}) = p^2, \quad P(\{(H, T)\}) = p(1-p) = P(\{(T, H)\}) \]

\[P(\{T,T\}) = (1-p)^2, \quad P(\{(H, H), (H, T)\}) = p, \quad \ldots, \quad P(\Omega) = 1 \]
(3) Flip a coin n times:
\[\Omega = \{H,T\}^n, \quad 2^n, \]
\[P(\emptyset) = 0, \quad \ldots, \quad P(\Omega) = 1 \]

(4) Flip a coin until the first head:
\[\Omega = \{H, TH, TTH, \ldots, \}, \]
\[2^n, \quad P \]

(5) Roll a fair die:
\[\Omega = \{1, 2, 3, 4, 5, 6\}, \quad 2^6 \]
\[P(\emptyset) = 0, \quad P(\{1\}) = \ldots = P(\{6\}) = \frac{1}{6}, \]
\[P(\{1, 2\}) = P(\{1, 2\}) = \ldots = P(\{4, 5, 6\}) = \frac{1}{3}, \]
\[P(\{1, 2, 3\}) = \ldots = P(\{4, 5, 6\}) = \frac{1}{2}, \]
\[P(\Omega) = 1 \]

When Ω is discrete (finite or countably infinite) and $\mathcal{F} = 2^\Omega$,
\[P(A) = \sum_{\omega \in A} P(\{\omega\}) \]

In other words, probabilities of singletons determine P

(6) Pick a random number between 0 and 1
\[\Omega = [0, 1] \]
\[\mathcal{F} = \text{Borel field} = \text{"smallest} \ \sigma\text{-algebra that contains open intervals in } [0, 1] \text{"} \]
\[P((a, b)) = b - a \text{ for all } a, b \text{ such that } 0 \leq a < b \leq 1 \]

When Ω is continuous (e.g., an interval or \mathbb{R}) and \mathcal{F} is Borel, $P((a, b)), \forall a < b$, determines $P(A)$ for all $A \in \mathcal{F}$
For instance, \(P((a,b]) = \lim_{c \to b}^{c > b} P((a,c]) \cap_{c \text{ rational}} \)

A similar conclusion can be made with \(P((a,b]) \neq a < b \)

For instance, \(P((a,b)) = \lim_{c \to b}^{c < b} P((a,c)) \cap_{c \text{ rational}} \)

So far a probability measure is similar to any other measure (such as length, area, volume, weight, etc.).

- **Conditional probability**

Let \(B \) be an event with \(P(B) \neq 0 \). Then

\[
P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A,B)}{P(B)} \quad \text{notation}
\]

reads "conditional probability of \(A \) given \(B \)"

Note: \(P(\cdot | B) \) is a probability measure over \(\Omega \):

1. \(P(A|B) \geq 0 \), \(\forall A \)
2. \(P(\Omega|B) = \frac{P(B)}{P(B)} = 1 \)
3. \(P(\cup A_i|B) = \frac{P(U(A_i \cap B))}{P(B)} = \frac{P(U(A_i \cap B))}{P(B)} = \sum_{i=1}^{\infty} \frac{P(A_i \cap B)}{P(B)} = \sum P(A_i|B) \)
\textbf{Chain rule}

\[P(A, B) = P(A) P(B|A) = P(B) P(A|B) \]

- True even when \(P(A) \) or \(P(B) = 0 \)

- Can be generalized to \(n \) events; e.g.,

\[P(A_1, A_2, A_3) = P(A_1) P(A_2|A_1) P(A_3|A_1A_2) \]

- If \(P(B) \neq 0 \), then

\[P(A|B) = \frac{P(B|A)}{P(B)} \cdot P(A) \]

\[\text{posterior prob of } A \text{ (given } B) \]

\[\text{prior prob of } A \]

\textbf{Bayes rule}

Let \(A_1, A_2, \ldots, A_n \) be nonzero probability events that partition \(\Omega \). Suppose we wish to compute

\[P(A_j|B) \]

based on \(P(A_i) \) and \(P(B|A_i) \), \(i = 1, 2, \ldots, n \)

We know that

\[P(A_j|B) = \frac{P(B|A_j) P(A_j)}{P(B)} \]

and

\[P(B) = \sum P(A_i) P(B|A_i) \]
Hence,

\[p(A_j | B) = \frac{p(B | A_j) \cdot p(A_j)}{\sum p(B | A_i) \cdot p(A_i)} \]
(Bayes rule)

Examples

(1) **Binary communication channel**

\[p(0) = 0.2 \quad p(1) = 0.8 \]

\[p(0|0) = 0.9 \quad p(0|1) = 0.1 \quad p(1|0) = 0.9 \quad p(1|1) = 0.1 \]

\[\Omega = \{ (0,0), (0,1), (1,0), (1,1) \}^3 \]

Let \(A = \{ 0 \text{ is sent } \} \) and \(B = \{ 0 \text{ is received} \} \)

Find \(p(A), p(B|A), p(B), p(A|B) \).

(2) **Finite state machine**

\[\Omega = \{ (\text{initial state}, \text{next state}) \}^2 = \{ \xi, \beta, \alpha \} \]

\[p(\alpha) = 0.5 \]

Let \(A = \{ \text{initial state is } \alpha \} \) and \(B = \{ \text{next state is } \alpha \} \)

Find \(p(A), p(B|A), p(B), p(A|B) \).