\[X \sim \text{Binom}(n, \frac{2}{n}) \]
\[P_X(k) = \binom{n}{k} \left(\frac{2}{n}\right)^k \left(1 - \frac{2}{n}\right)^{n-k} \]
\[\xrightarrow{n \to \infty} \frac{2^k}{k!} e^{-\frac{2}{n}} \quad \text{(pmf of Poisson}(\lambda)) \]

\[\text{Binom}(\frac{1}{\lambda}, \lambda) \xrightarrow{\lambda \to \infty} \text{Poisson}(\lambda) \]

Cumulative Distribution Function (cdf)

The probability of an arbitrary r.v. \(X \) is specified by
\[P(\{X \in [a,b]\}) = P(\{a < X \leq b\}) \quad \forall a, b \]

Equivalently, it suffices to specify its cdf
\[F_X(x) = P(\{X \leq x\}) \quad \forall x \in \mathbb{R} \]

Note:
\[P(\{X \in (a,b]\}) = F_X(b) - F_X(a) \]

Note:
\[P(\{X < a\}) = P(\{U \{X \leq b\}) = \lim_{b \to a} F_X(b) \]

Properties of cdf (distribution)

1. \(F_X(x) \geq 0 \)
2. \(F_X(x) \) is (monotonically) non-decreasing
3. \(\lim_{x \to -\infty} F_X(x) = 0 \), \(\lim_{x \to \infty} F_X(x) = 1 \)
4. \(F_X(x) \) is right continuous, i.e. \(F_X(a^+) = \lim_{x \to a^+} F_X(x) = F_X(a) \)
5. \(P(\{X = a\}) = P(\{X < a\}) - P(\{X \leq a\}) = F_X(a) - F_X(a^-) \)
6. For any event \(A \), \(P(\{X \in A\}) \) can be determined by \(F_X(x) \)
7. If \(X \) is discrete, then \(F_X(x) \) consists of countably many steps.
Def A random variable X is **continuous** if $F_x(x)$ is continuous.

Def X is **mixed** if it is neither discrete nor continuous.

If $F_x(x)$ is continuous and differentiable (except for countably many points) then X has a probability density function (pdf or density) $f_x(x)$ such that

$$F_x(x) = \int_{-\infty}^{x} f_x(u) \, du$$

And if $F_x(x)$ is differentiable at x, then

$$f_x(x) = \frac{d}{dx} F_x(x) = \lim_{\Delta x \to 0} \frac{F_x(x + \Delta x) - F_x(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{P(x < X \leq x + \Delta x)}{\Delta x}$$

Properties

1. $f_x(x) \geq 0$ (if $f_x(x)$ is non-decreasing)
2. $\int_{-\infty}^{\infty} f_x(x) \, dx = 1$ \Rightarrow $F_x(\infty)
3. For any event A, $P(\{x \in A\}) = \int_A f_x(x) \, dx$

For example, if X is continuous,

$$P(\{x \in (a, b)\}) = P(\{x \in (a, b)\}) = P(\{x \in (a, b)\}) = \int_a^b f_x(x) \, dx$$

Note

1. $f_x(x)$ can be greater than 1 (pdf is NOT probability)
2. Some EE texts use delta functions to denote jumps in the CDF

For example, if $X \sim \text{Bern}(p)$:

$$f_x(x) \rightarrow \begin{cases} 0 & \text{if } x < 0 \\ 1-p & \text{if } x = 1 \\ p & \text{if } x = 0 \\ 0 & \text{otherwise} \end{cases}$$

Examples of continuous r.v.s

1. **Uniform**: $X \sim U[a, b]$

2. **Exponential**: $X \sim \text{Exp}(-\lambda)$, $\lambda > 0$

Models service/inter-arrival times

Memoryless Property

For any $a, t > 0$, $P(X > a + t \mid X > a) = P(X > t)$

pdf

$$P(x > t) = \int_{t}^{\infty} \lambda e^{-\lambda x} \, dx = e^{-\lambda t}$$

$$P(x > a + t \mid x > a) = \frac{P(x > a + t, x > a)}{P(x > a)} = \frac{P(x > a + t)}{P(x > a)} = \frac{e^{-\lambda (a+t)}}{e^{-\lambda a}} = e^{-\lambda t}$$
Relationship between Exponential and Poisson

Let N be the number of packet arrivals during interval $(0, t]$ at rate λ, i.e.,

$$P_N(n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}, \quad n = 0, 1, 2, \ldots$$

Let X be the time until the first packet arrival. Find the pdf of X.

$$P(\{X \leq t\}) = P(\{N \geq 1\}) = 1 - e^{-\lambda t}$$

The pdf of X is $f_X(t) = \lambda e^{-\lambda t}$, $t > 0$

(3) Gaussian (normal): $X \sim N(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Model for thermal and shot noise