Mar-2-2016

Stationary random processes

- Stationarity refers to time invariance of some, or all, of the statistics of a random process, such as mean, autocorrelation, and n-th order distribution.

- We define two types of stationarity: strict sense stationarity (SSS) and wide sense stationarity (WSS).

- A random process \(\{X(t)\} \) is said to be SSS if all its finite order distributions are time-invariant, i.e., the joint distribution of \(X(t_1), X(t_2), \ldots, X(t_n) \) is equal to that of \(X(t_1+t), X(t_2+t), \ldots, X(t_n+t) \) for every \(t < t_2 < \ldots < t_n \), every \(T \), and every \(n \).

- For a strict sense stationary \(\{X(t)\} \), the first-order distribution is independent of \(t \), and the second order distribution of \(X(t_1) \) and \(X(t_2) \) depends only on \(T= t_2 - t_1 \).

- IID processes are SSS.

- Random walk, Poisson processes and the Brownian motion are NOT SSS.

- The Gauss-Markov process is NOT SSS. But if we choose the distribution of \(X_0 \) to be the steady state distribution, then we can make it SSS.

- A random process \(\{X(t)\} \) is said to be WSS if its mean and autocorrelation functions are time-invariant, i.e.,
 \[
 \begin{align*}
 \{ E[X(t)] \} &= \mu, \text{ independent of } t. \\
 R_X(t_1, t_2) &= \text{a function only of the time difference } t_2 - t_1.
 \end{align*}
 \]

 For technical reasons, we also define \(E[(X(t))^2] < \infty \).

 Since \(R_X(t_1, t_2) = R_X(t_2, t_1) \), it is a function of \(|t_2 - t_1| \).

 Also, \(R_X(t_1, t_1) = R_X(0, t_1) \). Hence, we write \(R_X(t) \) to mean \(R_X(0, T) = R_X(t, 0) \).

- Clearly, SSS \(\Rightarrow \) WSS. (assuming \(E[(X(t))^2] < \infty \))

- The converse is not true. (Think of your own example!)

- If \(\{X(t)\} \) is Gaussian and WSS, then it is also SSS.

- Random walk, Poisson processes and the Brownian motion are NOT WSS. For example, if \(\{X(t)\} \) is the random walk, then \(R_X(n, m) = \min\{n, m\} \).

 (Another check: If \(\{X(t)\} \) is WSS, then \(E[X(t)^2] = E[X(0)^2] \) is constant.)
Autocorrelation function of WSS processes

1. \(R_x(t) = E[x(t)x(t)] \) is even, i.e., \(R_x(t) = R_x(-t) \) for all \(t \). (Why? \(R_x(0,t) = R_x(t,0) = R_x(-t,0) \))

2. \(|R_x(t)| \leq R_x(0) = E[x^2(t)] \) (the average power of \(X(t) \))

 Why? \((R_x(t))^2 = \left(E[x(t)x(t+\tau)] \right)^2 \leq E[x^2(t)]E[x^2(t+\tau)] = \left(E[x^2(t)] \right)^2 \) by CS ineq.

3. If \(R_x(t) = R_x(0) \) for some \(T \neq 0 \), then \(R_x(t) \) is periodic with period \(T \) and so is \(X(t) \) (with probability 1), i.e.,

 \[R_x(t) = R_x(t+T) \] and \(P(X(t) = X(t+T)) \) for every \(t \) = 1.

Example: Let \(X(t) = \alpha \cos(\omega t + \Theta) \) where \(\Theta \sim U(0,2\pi) \).

Then, \(R_x(t) = E[x(t)x(t)] = \alpha^2 E[\cos(\Theta)\cos(\omega t + \Theta)] = \frac{\alpha^2}{2}\cos(\omega t) \).

Here, \(X(t) \) is periodic with period \(T = \frac{2\pi}{\omega} \) and so is \(R_x(t) \).

To prove property, note that for every \(\tau \)

\[
(R_x(t) - R_x(t+T))^2 = \left(E[x(t)(x(t+\tau) - x(t+\tau+T))] \right)^2 \leq E[x^2(t)] E[(x(t+\tau) - x(t+\tau+T))^2]
\]

\[
= R_x(0)(2R_x(0) - 2R_x(\tau)) = 0 \Rightarrow R_x(t) = R_x(t+T)
\]

\(\{X(t)\} \) is said to be cyclostationary with cycle \(T \) if \(X(t_1), X(t_2), \ldots, X(t_n) \) has the same distribution as \(X(t_1+kT), X(t_2+kT), \ldots, X(t_n+kT) \) for every \(t_1, t_2, \ldots, t_n \), every \(k = 1, 2, \ldots \) and every \(n \).

Corollary: \(X(t), X(t+T), X(t+2T), \ldots \) is a discrete-time stationary process.

4. \(R_x(t) \) is positive definite (nonnegative definite), i.e., for any \(n \), any \(t_1, t_2, \ldots, t_n \), and \(a_1, a_2, \ldots, a_n \in \mathbb{R} \)

 \[
 (a_1, a_2, \ldots, a_n)^T \begin{bmatrix}
 R_x(t_1-t_1) & \cdots & R_x(t_1-t_n) \\
 \vdots & \ddots & \vdots \\
 R_x(t_n-t_1) & \cdots & R_x(t_n-t_n)
 \end{bmatrix}
 \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_n
 \end{bmatrix} \geq 0.

 \]

 (Later, we argue that this property can be checked easily by considering the Fourier transform of \(R_x(t) \) is nonnegative.)
Which functions can be $R_{x}(t)$?

(1) \[\text{NO} \] \hspace{1cm} \text{NOT even} \hspace{1cm} \text{sampling} \hspace{1cm} \text{stationary Gauss Markov} \hspace{1cm} \text{Even, periodic, and FT is nonnegative} \]

(2) \[e^{-\alpha t} \] \hspace{1cm} \text{YES} \hspace{1cm} \text{not peaked at $t=0$} \hspace{1cm} \text{YES} \]

(3) \[\text{NO} \] \hspace{1cm} \text{not nonnegative} \hspace{1cm} \text{YES} \]

(4) \[\text{sin}(t) \] \hspace{1cm} \text{YES} \hspace{1cm} \text{YES for every t} \]

Interpretation of autocorrelation function

- Let $\{x(t)\}$ be WSS with zero mean. Then the fact that $R_{x}(t)$ drops rapidly in t implies that the samples become uncorrelated quickly.
- Conversely, if $R_{x}(t)$ drops slowly, then the samples are highly correlated.
- So in some sense, $R_{x}(t)$ is the measure of the rate of change in $X(t)$ with time t (in terms of average power) the frequency response of $X(t)$.
- This interpretation can be made precise if we consider its Fourier transform $S_{x}(f)$, which captures the amount of power contained in the frequency components of $X(t)$.

Power spectral density

- The power spectral density (psd) of a WSS process $\{x(t)\}$ is the Fourier transform of $R_{x}(t)$:
 \[S_{x}(f) = \mathcal{F}[R_{x}(t)] = \int_{-\infty}^{\infty} R_{x}(t)e^{-j2\pi ft} \, dt \]
- If the process is discrete-time, then we use the discrete-time Fourier transform (DTFT) \[S_{x}(f) = \sum_{n=-\infty}^{\infty} x(n)e^{-j2\pi fn}, \quad f \in [-\frac{1}{2}, \frac{1}{2}] \text{ (periodic with period 1)} \]
- $R_{x}(t)$ or $R_{x}(n)$ can be reversed from the psd:
 \[R_{x}(t) = \mathcal{F}^{-1}[S_{x}(f)] = \int_{-\infty}^{\infty} S_{x}(f)e^{j2\pi ft} \, df \quad \text{and similarly} \]
 \[R_{x}(n) = \sum_{f=-\frac{1}{2}}^{\frac{1}{2}} S_{x}(f)e^{j2\pi fn} \, df \]
Properties of psd

1. $S_x(f)$ is even and real (since $R_x(t)$ is even and real)

2. $\int_{-\infty}^{\infty} S_x(f) df = R_x(0) = \mathbb{E}[x^2(t)]$, the average power of $X(t)$.

3. $S_x(f)$ is the average power density:

$$\int_{f_1}^{f_2} S_x(f) df + \int_{-f_2}^{-f_1} S_x(f) df = 2 \int_{f_1}^{f_2} S_x(f) df$$

is the average power of $X(t)$ in the frequency band $[f_1, f_2]$.

(We will prove it later.)