Final Examination
(Total: 260 points)

There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable as possible. Please justify any claim that you make.

 (a) Find the joint pdf $f_{X,Z}(x, z)$ of X and Z.
 (b) Find the joint pdf $f_{Z,W}(z, w)$ of Z and W.
 (c) Find $E[Z|X]$.
 (d) Find $E[X|Z]$.

2. MMSE estimation (30 pts). Let $X \sim \text{Exp}(1)$ and $Y = \min\{X, 1\}$.

 (a) Find $E[Y]$.
 (b) Find the estimate $\hat{X} = g(Y)$ of X given Y that minimizes the mean square error $E[(X - \hat{X})^2] = E[(X - g(Y))^2]$, and plot $g(y)$ as a function of y.
 (c) Find the mean square error of the estimate found in part (b).

3. Is the grass always greener on the other side? (30 pts). Let X and Y be two i.i.d. continuous nonnegative random variables with invertible common cdf F, i.e.,

 $$P\{X \leq x\} = P\{Y \leq x\} = F(x).$$

 (a) Find $P\{X > Y\}$ and $P\{X < Y\}$.

 Suppose now that we observe the value of X and make a decision on whether X is larger or smaller than Y.

 (b) Find the optimal decision rule $d(x)$ that minimizes the error probability. Your answer should be in terms of the common cdf F.
 (c) Find the probability of error for the decision rule found in part (b).
4. **Sampled Wiener process (60 pts).** Let \(\{W(t), t \geq 0\} \) be the standard Brownian motion. For \(n = 1, 2, \ldots, \) let
\[
X_n = n \cdot W \left(\frac{1}{n} \right).
\]
(a) Find the mean and autocorrelation functions of \(\{X_n\} \).
(b) Is \(\{X_n\} \) WSS? Justify your answer.
(c) Is \(\{X_n\} \) Markov? Justify your answer.
(d) Is \(\{X_n\} \) independent increment? Justify your answer.
(e) Is \(\{X_n\} \) Gaussian? Justify your answer.
(f) For \(n = 1, 2, \ldots, \) let \(S_n = X_n/n \). Find the limit
\[
\lim_{n \to \infty} S_n
\]
in probability.

5. **Poisson process (40 pts).** Let \(\{N(t), t \geq 0\} \) be a Poisson process with arrival rate \(\lambda > 0 \). Let \(s \leq t \).
(a) Find the conditional pmf of \(N(t) \) given \(N(s) \).
(b) Find \(\mathbb{E}[N(t)|N(s)] \) and its pmf.
(c) Find the conditional pmf of \(N(s) \) given \(N(t) \).
(d) Find \(\mathbb{E}[N(s)|N(t)] \) and its pmf.

6. **Hidden Markov process (60 pts).** Let \(X_0 \sim N(0, \sigma^2) \) and \(X_n = \frac{1}{2} X_{n-1} + Z_n \) for \(n \geq 1 \), where \(Z_1, Z_2, \ldots \) are i.i.d. \(N(0, 1) \), independent of \(X_0 \). Let \(Y_n = X_n + V_n \), where \(V_n \) are i.i.d. \(\sim N(0, 1) \), independent of \(\{X_n\} \).
(a) Find the variance \(\sigma^2 \) such that \(\{X_n\} \) and \(\{Y_n\} \) are jointly WSS.
Under the value of \(\sigma^2 \) found in part (a), answer the following.
(b) Find \(R_Y(n) \).
(c) Find \(R_{XY}(n) \).
(d) Find the MMSE estimate of \(X_n \) given \(Y_n \).
(e) Find the MMSE estimate of \(X_n \) given \((Y_n, Y_{n-1}) \).
(f) Find the MMSE estimate of \(X_n \) given \((Y_n, Y_{n+1}) \).