
(a) Find the joint pdf $f_{X,Z}(x, z)$ of X and Z.
(b) Find the joint pdf $f_{Z,W}(z, w)$ of Z and W.
(c) Find $E[Z|X]$.
(d) Find $E[X|Z]$.

Solution:

(a) For $z < x$, we have

$$F_{Z|X}(z|x) = P\{Z \leq z \mid X = x\} = 0.$$

For $0 \leq x \leq z$,

$$F_{Z|X}(z|x) = P\{Z \leq z \mid X = x\}$$
$$= P\{X + Y \leq z \mid X = x\}$$
$$= P\{Y \leq z - x \mid X = x\}$$
$$\overset{(a)}{=} P\{Y \leq z - x\}$$
$$= 1 - e^{-(z-x)},$$

where (a) follows from the independence of X and Y. We therefore have

$$f_{Z|X}(z|x) = \begin{cases} e^{-(z-x)}, & \text{if } 0 \leq x \leq z \\ 0, & \text{otherwise.} \end{cases}$$

Therefore,

$$f_{X,Z}(x, z) = \begin{cases} e^{-z}, & \text{if } 0 \leq x \leq z \\ 0, & \text{otherwise.} \end{cases}$$
(b) From the previous part, we have, for $0 \leq x \leq z$,
\[
f_{X|Z}(x|z) = \frac{f_{X,Z}(x,z)}{f_Z(z)} = \frac{\int_0^z f_{X,Z}(x,z)dx}{f_Z(z)} = \frac{1}{z}.
\]
Thus for $z \geq 0$, $X \mid \{Z = z\} \sim \text{Unif}[0, z]$. We have $W = X - Y = 2X - Z$. Therefore,
\[
F_{W|Z}(w|z) = P\{W \leq w \mid Z = z\} = P\{2X - Z \leq w \mid Z = z\} = P\{X \leq \frac{z + w}{2} \mid Z = z\} = \begin{cases} 0, & \text{if } w < -z \\ \frac{z + w}{2z}, & \text{if } -z \leq w \leq z \\ 1, & \text{if } w > z. \end{cases}
\]
Thus,
\[
f_{W|Z}(w|z) = \begin{cases} \frac{1}{2z}, & \text{if } |w| \leq z \\ 0, & \text{otherwise}, \end{cases}
\]
which leads us to conclude that
\[
f_{Z,W}(z, w) = f_{W|Z}(w|z)f_Z(z) = \begin{cases} \frac{1}{2}e^{-z}, & \text{if } |w| \leq z \\ 0, & \text{otherwise}. \end{cases}
\]
(c) We have
\[
E[Z|X] = E[X + Y \mid X] = X + E[Y|X] = X + E[Y] = X + 1,
\]
where $E[Y|X] = E[Y]$ since X and Y are independent.
(d) From part (b), we have $X \mid \{Z = z\} \sim \text{Unif}[0, z]$. Therefore,
\[
E[X|Z] = \frac{Z}{2}.
\]
2. **MMSE estimation (30 pts).** Let $X \sim \text{Exp}(1)$ and $Y = \min\{X, 1\}$.

2
(a) Find $E[Y]$.

(b) Find the estimate $\hat{X} = g(Y)$ of X given Y that minimizes the mean square error $E[(X - \hat{X})^2] = E[(X - g(Y))^2]$, and plot $g(y)$ as a function of y.

(c) Find the mean square error of the estimate found in part (b).

Solution:

(a) We have

$$E[Y] = E[\min\{X, 1\}]$$
$$= \int_0^\infty \min\{x, 1\} e^{-x}dx$$
$$= \int_0^1 xe^{-x}dx + \int_1^\infty e^{-x}dx$$
$$= -xe^{-x} - e^{-x}\bigg|_0^1 + e^{-1}$$
$$= 1 - e^{-1}.$$

(b) We have $g(y) = E[X \mid Y = y]$. For $y < 1$,

$$E[X \mid Y = y] = E[X \mid X = y] = y.$$

For $y = 1$, we have

$$E[X \mid Y = y] = E[X \mid X \geq 1]$$
$$\overset{(a)}{=} E[X] + 1$$
$$= 2,$$

where (a) follows from the memorylessness property of the exponential distribution. Thus,

$$g(y) = \begin{cases} y, & 0 \leq y < 1 \\ 2, & y = 1. \end{cases}$$

The plot of $g(y)$ vs y is shown in Fig. 1.

(c) For $0 \leq y < 1$, $\text{Var}(X \mid Y = y) = 0$. For $y = 1$,

$$\text{Var}(X \mid Y = y) = \text{Var}(X \mid X \geq 1)$$
$$\overset{(a)}{=} \text{Var}(X)$$
$$= 1,$$

where the step (a) follows from the memoryless property. We therefore have

$$\text{MSE} = E[\text{Var}(X|Y)]$$
$$= \text{Var}(X \mid Y = 1)P\{Y = 1\}$$
$$= e^{-1}.$$
3. Is the grass always greener on the other side? (30 pts). Let X and Y be two i.i.d. continuous nonnegative random variables with invertible common cdf F, i.e.,

$$P\{X \leq x\} = P\{Y \leq x\} = F(x).$$

(a) Find $P\{X > Y\}$ and $P\{X < Y\}$.

Suppose now that we observe the value of X and make a decision on whether X is larger or smaller than Y.

(b) Find the optimal decision rule $d(x)$ that minimizes the error probability. Your answer should be in terms of the common cdf F.

(c) Find the probability of error for the decision rule found in part (b).

Solution:

(a) By symmetry, $P\{X > Y\} = P\{X < Y\} = 1/2$. Alternatively, let f be the common pdf of X and Y. Then

$$P\{X > Y\} = \int_0^\infty P\{X > Y \mid Y = y\}f(y)dy$$

$$= \int_0^\infty P\{X > y\}f(y)dy$$

$$= \int_0^\infty (1 - F(y))f(y)dy$$

$$= 1 - \int_0^\infty f(y)F(y)dy.$$

Here, (a) follows from the independence of X and Y. We now have, integrating
by parts,

\[
I := \int_{0}^{\infty} f(y) F(y) \, dy \\
= \left[F(y)^2 \right]_{0}^{\infty} - \int_{0}^{\infty} F(y) f(y) \, dy \\
= \lim_{y \to \infty} F(y)^2 - I \\
= 1 - I,
\]

whence \(I = 1/2 \). Thus,

\[
P\{X > Y\} = \frac{1}{2}.
\]

By interchanging the roles of \(X \) and \(Y \), we conclude that

\[
P\{X < Y\} = \frac{1}{2}.
\]

Note: We can also compute \(I \) by noting that

\[
f(y) F(y) = \frac{1}{2} \frac{d}{dy} F(y)^2.
\]

(b) Let us define a random variable \(Z \) as

\[
Z = \begin{cases}
1, & \text{if } X > Y \\
0, & \text{if } X \leq Y.
\end{cases}
\]

Then, we have to find a decision rule \(d(\cdot) \), such that \(P\{d(X) \neq Z\} \) is minimized. We know that this should be the MAP decision rule. We have

\[
p_{Z|X}(1|x) = P\{Z = 1 \mid X = x\} \\
= P\{Y < X \mid X = x\} \\
= P\{Y < x \mid X = x\} \\
= F(x).
\]

Therefore, \(p_{Z|X}(0|x) = 1 - F(x) \), i.e., we should choose \(d(x) = 1 \) if \(F(x) > 1 - F(x) \), i.e., if \(x > F^{-1}(1/2) \) (which is the median of \(X \) and is unique since \(F \) is invertible). Thus the optimal decision rule is given by

\[
d(x) = \begin{cases}
1, & \text{if } x > F^{-1}(1/2) \\
0, & \text{if } x \leq F^{-1}(1/2).
\end{cases}
\]

In other words, we predict that \(X \) is larger than \(Y \) if the observed value of \(X \) is larger than the median.
(c) We have

\[P \{d(X) \neq Z\} = P \{X > Y, X \leq F^{-1}(1/2)\} + P \{X < Y, X > F^{-1}(1/2)\} \]

\[= P\{Y < X \leq F^{-1}(1/2)\} + P\{F^{-1}(1/2) < X < Y\} \]

\[= \int_0^{F^{-1}(1/2)} \int_0^x f(x)f(y)dydx + \int_{F^{-1}(1/2)}^\infty \int_{F^{-1}(1/2)}^\infty f(x)f(y)dydx \]

\[= \int_0^{F^{-1}(1/2)} f(x)F(x)dx + \int_{F^{-1}(1/2)}^\infty f(x)(1 - F(x))dx \]

\[= \frac{1}{2} + \int_0^{F^{-1}(1/2)} f(x)F(x)dx - \int_{F^{-1}(1/2)}^\infty f(x)F(x)dx \]

\[= \frac{1}{2} + \frac{1}{2} \left(F \left(F^{-1}(1/2) \right) \right)^2 - \frac{1}{2} \left(1 - \left(F \left(F^{-1}(1/2) \right) \right) \right)^2 \]

\[= \frac{1}{2} + \frac{1}{8} - \frac{3}{8} \]

\[= \frac{1}{4}. \]

Here, (a) follows from the observation made at the end of part (a).

4. *Sampled Wiener process (60 pts)*. Let \(\{W(t), t \geq 0\} \) be the standard Brownian motion. For \(n = 1, 2, \ldots \), let

\[X_n = n \cdot W \left(\frac{1}{n} \right). \]

(a) Find the mean and autocorrelation functions of \(\{X_n\} \).

(b) Is \(\{X_n\} \) WSS? Justify your answer.

(c) Is \(\{X_n\} \) Markov? Justify your answer.

(d) Is \(\{X_n\} \) independent increment? Justify your answer.

(e) Is \(\{X_n\} \) Gaussian? Justify your answer.

(f) For \(n = 1, 2, \ldots \), let \(S_n = X_n/n \). Find the limit

\[\lim_{n \to \infty} S_n \]

in probability.

Solution:

(a) We have

\[E[X_n] = nE[W(1/n)] = 0. \]
For \(m, n \in \mathbb{N} \) and \(m \geq n \), we have
\[
E[X_m X_n] = mnE[W(1/m)W(1/n)]
\]
\[
= mn \cdot \min\{1/m, 1/n\}
\]
\[
= mn \cdot \frac{1}{m}
\]
\[
= n.
\]
Thus in general,
\[
E[X_m X_n] = \min\{m, n\}.
\]

(b) No. Since the autocorrelation function is not time-invariant, \(\{X_n\} \) is not WSS.

(c) Yes. Clearly, \(\{X_n\} \) is a Gaussian process (see the solution to part (e)) with mean and autocorrelation functions as found in part (a). Therefore, for integers \(m_1 < m_2 \leq m_3 < m_4 \), we have
\[
E[(X_{m_2} - X_{m_1})(X_{m_4} - X_{m_3})] = E[X_{m_2}X_{m_4}] + E[X_{m_1}X_{m_3}] - E[X_{m_2}X_{m_3}] - E[X_{m_1}X_{m_4}]
\]
\[
= \min\{m_2, m_4\} + \min\{m_1, m_3\} - \min\{m_2, m_3\} - \min\{m_1, m_4\}
\]
\[
= m_2 + m_1 - m_2 - m_1
\]
\[
= 0
\]
\[
= E[X_{m_2} - X_{m_1}]E[X_{m_4} - X_{m_3}].
\]

Therefore, since \((X_{m_2} - X_{m_1}) \) and \((X_{m_4} - X_{m_3}) \) are jointly Gaussian and uncorrelated, they are independent. Now, for positive integers \(n_1 < n_2 < \cdots < n_k \) for some \(k \), \((X_{n_1}, X_{n_2} - X_{n_1}, \ldots, X_{n_k} - X_{n_{k-1}}) \), being a linear transformation of a Gaussian random vector, is itself Gaussian. Moreover, from what we just showed, \((X_{n_1}, X_{n_2} - X_{n_1}, \ldots, X_{n_k} - X_{n_{k-1}}) \) are pairwise independent. Therefore, they are all independent, which implies that \(\{X_n\} \) is independent-increment. This implies Markovity.

(d) Yes. See the solution to part (c).

(e) Yes. For integers \(n_1, n_2, \ldots, n_k \) for any \(k \), we have
\[
\begin{bmatrix}
X_{n_1} \\
X_{n_2} \\
\vdots \\
X_{n_k}
\end{bmatrix}
=
\begin{bmatrix}
n_1 & 0 & \cdots & 0 \\
0 & n_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & n_k
\end{bmatrix}
\begin{bmatrix}
W(1/n_1) \\
W(1/n_2) \\
\vdots \\
W(1/n_k)
\end{bmatrix}
\]
Thus, \([X_{n_1}, \cdots, X_{n_k}]^T \), being a linear transformation of a Gaussian random vector, is itself a Gaussian random vector. Therefore, \(\{X_n\} \) is Gaussian.
Recall that $X_n \sim N(0, n)$, which implies that $X_n/\sqrt{n} \sim N(0, 1)$. Therefore, for any fixed $\epsilon > 0$, we have

$$P\{|S_n| > \epsilon\} = P\{|X_n| > n\epsilon\} = P\left\{\frac{|X_n|}{\sqrt{n}} > \epsilon\sqrt{n}\right\} = 2Q(\epsilon\sqrt{n}) \to 0,$$

as $n \to \infty$. Therefore, $\lim_{n \to \infty} S_n = 0$ in probability. Alternatively, note that $W(0) = 0$ and $W(t)$ is continuous with probability 1. Therefore

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} W\left(\frac{1}{n}\right) = W(0) = 0.$$

5. **Poisson process (40 pts).** Let $\{N(t), t \geq 0\}$ be a Poisson process with arrival rate $\lambda > 0$. Let $s \leq t$.

(a) Find the conditional pmf of $N(t)$ given $N(s)$.

(b) Find $E[N(t)|N(s)]$ and its pmf.

(c) Find the conditional pmf of $N(s)$ given $N(t)$.

(d) Find $E[N(s)|N(t)]$ and its pmf.

Solution:

(a) Assume $0 \leq n_s \leq n_t$. By the independent increment property of the Poisson process, we would get

$$P\{N(t) = n_t|N(s) = n_s\} = P\{N(t) - N(s) = n_t - n_s|N(s) = n_s\}
\hspace{1cm} = P\{N(t) - N(s) = n_t - n_s\}
\hspace{1cm} = e^{-\lambda(t-s)} \frac{\lambda(t-s)^{n_t-n_s}}{(n_t-n_s)!}$$

for $n_s = 0, 1, \ldots$ and $n_t = n_s, n_s + 1, \ldots$. Thus,

$$N(t)|\{N(s) = n_s\} \sim n_s + \text{Poisson}(\lambda(t-s)).$$

(b) From part (a), it immediately follows that

$$E[N(t)|N(s)] = N(s) + \lambda(t-s).$$

Therefore, the pmf of $E[N(t)|N(s)]$ is

$$p_{E[N(t)|N(s)]}(x) = \begin{cases} e^{-\lambda s} (\frac{\lambda s}{k})^k / k! & \text{if } x = k + \lambda(t-s), \quad k = 0, 1, \ldots \\ 0 & \text{otherwise} \end{cases}$$
(c) From part (a), the joint pmf of \((N(t), N(s))\) for \(0 \leq n_s \leq n_t\), is
\[
P\{N(t) = n_t, N(s) = n_s\} = P\{N(s) = n_s\}P\{N(t) = n_t|N(s) = n_s\}
= e^{-\lambda s}(\lambda s)^{n_s}/n_s! e^{-\lambda(t-s)}(\lambda(t-s))^{n_t-n_s}/(n_t-n_s)!
= e^{-\lambda t}n_t^{n_t}(t-s)^{n_t-n_s}/n_s!(n_t-n_s)!
\]
Therefore, the conditional pmf of \(N(s)|\{N(t) = n_t\}\) is for \(n_t \geq n_s \geq 0\)
\[
P\{N(s) = n_s|N(t) = n_t\} = P\{N(s) = n_s, N(t) = n_t\}/P\{N(t) = n_t\}
= \left(\frac{e^{-\lambda t}n_t^{n_t}(t-s)^{n_t-n_s}}{n_s!(n_t-n_s)!}\right) \left(\frac{e^{-\lambda t}(\lambda t)^{n_t}}{n_t!}\right)^{-1}
= \left(\frac{n_t}{n_s}\right)\left(\frac{s}{t}\right)^{n_s} \left(1 - \frac{s}{t}\right)^{n_t-n_s}.
\]
Hence,
\[N(s)|\{N(t) = n_t\} \sim \text{Binom}\left(n_t, \frac{s}{t}\right).\]
(d) From part (c), it immediately follows that
\[E[N(s)|N(t)] = \frac{s}{t}N(t),\]
and its pmf is
\[p_{E[N(s)|N(t)]}(x) = \begin{cases} e^{-\lambda t}(\lambda t)^k/k! & \text{if } x = \frac{k}{t}, \quad k = 0, 1,
\vdots \\
0 & \text{otherwise} \end{cases} \]

6. **Hidden Markov process (60 pts).** Let \(X_0 \sim N(0, \sigma^2)\) and \(X_n = \frac{1}{2}X_{n-1} + Z_n\) for \(n \geq 1\), where \(Z_1, Z_2, \ldots\) are i.i.d. \(N(0, 1)\), independent of \(X_0\). Let \(Y_n = X_n + V_n\), where \(V_n\) are i.i.d. \(\sim N(0, 1)\), independent of \(\{X_n\}\).

(a) Find the variance \(\sigma^2\) such that \(\{X_n\}\) and \(\{Y_n\}\) are jointly WSS. Under the value of \(\sigma^2\) found in part (a), answer the following.

(b) Find \(R_Y(n)\).
(c) Find \(R_{XY}(n)\).
(d) Find the MMSE estimate of \(X_n\) given \(Y_n\).
(e) Find the MMSE estimate of \(X_n\) given \((Y_n, Y_{n-1})\).
(f) Find the MMSE estimate of X_n given (Y_n, Y_{n+1}).

Solution:

(a) If $\{X_n\}$ is WSS, then $\text{Var}(X_n) = \text{Var}(X_0) = \sigma^2$ for all $n \geq 0$. From the recursive relation, we would get

$$\text{Var}(X_n) = \frac{1}{4}\text{Var}(X_{n-1}) + \text{Var}(Z_n),$$

which implies $\sigma^2 = \frac{4}{3}$.

(b) First, note that for $n \geq 0$,

$$X_{m+n} = \frac{1}{2}X_{m+n-1} + Z_{m+n}$$

$$= \frac{1}{4}X_{m+n-2} + \frac{1}{2}Z_{m+n-1} + Z_{m+n}$$

$$= \ldots$$

$$= \frac{1}{2^n}X_m + \frac{1}{2^{n-1}}Z_{m+1} + \ldots + \frac{1}{2}Z_{m+n-1} + Z_{m+n}.$$

Hence, it follows that

$$R_X(n) = \mathbb{E}[X_{m+n}X_n] = 2^{-n}\mathbb{E}[X_m^2] = \frac{4}{3}2^{-|n|}.$$

Now we can find the autocorrelation function of $\{Y_n\}$ easily.

$$R_Y(n) = \mathbb{E}[Y_{m+n}Y_m]$$

$$= \mathbb{E}[(X_{m+n} + V_{m+n})(X_m + V_m)]$$

$$= \mathbb{E}[X_{m+n}X_m + X_{m+n}V_m + V_{m+n}X_m + V_{m+n}V_m]$$

$$= R_X(n) + \delta(n)$$

$$= \frac{4}{3}2^{-|n|} + \delta(n)$$

Here $\delta(n)$ denotes the Kronecker delta function, that is,

$$\delta(n) = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{otherwise}. \end{cases}$$

(c) The cross correlation function $R_{XY}(n)$ is

$$R_{XY}(n) = \mathbb{E}[X_{m+n}Y_m]$$

$$= \mathbb{E}[X_{m+n}X_m + X_{m+n}V_m]$$

$$= R_X(n) = \frac{4}{3}2^{-|n|}.$$
(d) Since X_n and Y_n are jointly Gaussian, we can find the conditional expectation $E[X_n|Y_n]$, which is the MMSE estimate of X_n given Y_n, as follows:

\[
E[X_n|Y_n] = E[X_n] + \frac{\text{Cov}(X_n, Y_n)}{\text{Var}(Y_n)}(Y_n - E[Y_n])
\]

\[
= \frac{R_{XY}(0)}{R_Y(0)}Y_n
\]

\[
= \frac{4}{7}Y_n.
\]

(e) As in part (d), the MMSE estimate of X_n given (Y_n, Y_{n-1}) is

\[
E[X_n|Y_n, Y_{n-1}] = E[X_n] + \Sigma_{X_n,(Y_n,Y_{n-1})}^{-1}\Sigma_{(Y_n,Y_{n-1})}^{-1} \left(\begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} - E \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix} \right)
\]

\[
= \begin{bmatrix} R_{XY}(0) & R_{XY}(1) \\ R_Y(1) & R_Y(0) \end{bmatrix}^{-1} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix}
\]

\[
= \begin{bmatrix} 4/3 & 2/3 \\ 7/3 & 2/3 \end{bmatrix}^{-1} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix}
\]

\[
= \begin{bmatrix} 8/15 & 2/15 \\ 2/15 & 7/15 \end{bmatrix} \begin{bmatrix} Y_n \\ Y_{n-1} \end{bmatrix}
\]

\[
= \frac{8}{15}Y_n + \frac{2}{15}Y_{n-1}.
\]

(f) Since (X_n, Y_n) are jointly WSS, from part (e) it immediately follows that the conditional expectation $E[X_n|Y_n, Y_{n+1}]$ has the same form with $E[X_n|Y_n, Y_{n-1}]$:

\[
E[X_n|Y_n, Y_{n+1}] = \frac{8}{15}Y_n + \frac{2}{15}Y_{n+1}.
\]