ECE 269 Lecture #18

2/25/2019
Admin. notes

- Midterm #2 has been graded.
- You must follow the honor codes!
 (do NOT copy somebody else's exams, homework, and programming assignments)

Last

- Linear diff. eqs
- Cayley - Hamilton theorem

Today

- Perron - Frobenius theorem
A matrix \(A \in \mathbb{R}^{m \times n} \) or a vector \(x \in \mathbb{R}^n \) is \underline{positive} (denoted \(A > 0 \) or \(x > 0 \)) if all of its entries are \(> 0 \). Similarly, \(A \geq 0 \) or \(x \geq 0 \) if all the entries are \(\geq 0 \).

- A nonnegative square matrix \(A \) is \underline{primitive} (regular) if \(A^k > 0 \) for some \(k \).

- A nonnegative square matrix \(A \) is \underline{irreducible} if for every \((i,j)\), \((A^k)_{ij} > 0\) for some \(k = k(i,j) \).

Examples

1. \(A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \) is \(\geq 0 \) (positive)
(2) \[B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \geq 0 \text{ is primitive} \] (but not positive)

since

\[B^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \geq 0 \]

(3) \[P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \geq 0 \text{ is irreducible} \] (but not primitive)

since

\[P_{12} = P_{21} > 0 \text{ and } P^2 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]

satisfies \((P^2)_{11} = (P^2)_{22} > 0\)
positive \iff primitive \iff irreducible

- If A is not irreducible, A is called reducible.

- Let $A \in \mathbb{R}^{n \times n}$ be nonnegative and irreducible. Then the gcd of all k such that $(A^k)_{ii} > 0$ is called the period of A.

Examples

(1) For $B = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $(B')_{22} = 0$, $(B^2)_{22} > 0$

$(B^3)_{22} > 0$, $(B^4)_{22} > 0$, ...

$\Rightarrow \gcd \{2, 3, 4, \ldots \} = 1$

$(B')_{11} > 0$, $(B^2)_{11} > 0$, ...

$\Rightarrow \gcd \{1, 2, 3, \ldots \} = 1$
Fact. It is independent of which index \(i \) we consider.

(2) For \(P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \), \((P^1)_n = (P^3)_n = (P^5)_n = \cdots = 0 \)

and \((P^2)_n = (P^4)_n = (P^6)_n = \cdots = 1 > 0 \)

\(\Rightarrow \gcd \{ 2, 4, 6, \ldots \} = 2 \)

\(P \) has the period of 2.

* If \(A \) has the period of 1, then \(A \) is called aperiodic. Otherwise, \(A \) is periodic.

Fact. For square \(A > 0 \), \(A \) is irreducible and aperiodic if \(\gcd = 1 \nRightarrow A \) is primitive.
Let \(A \in \mathbb{R}^{n \times n} \) be nonnegative and irreducible with period \(p \). Then the "largest" eigenvalue \(\lambda_{PF} \) of \(A \) (Person - Frobenius eigenvalue) satisfies the following properties

1. \(\lambda_{PF} \) is real and positive
2. \(\lambda_{PF} \geq |\lambda| \) for every eigenvalue \(\lambda \) of \(A \) and every eigenvalue \(\lambda \) satisfying \(|\lambda| = \lambda_{PF} \) is simple (algebraic and geometric multiplicity of \(\lambda \)) and of the form \(\omega \lambda_{PF} \), where \(\omega \) is the \(p \)-th root of unity.
Example Consider \(P = [1 \ 0] \geq 0 \) (irreducible).

Then \(\lambda_{pf} = 1 \) (for eigenvector \((1\ i))\) and the other eigenvalue is \(\lambda = -\lambda_{pf} = -1 \).

(3) \(\lambda_{pf} \) is simple (algebraic multiplicity of \(1 \)

\(= \lambda_{pf} \) is a simple root of the characteristic polynomial of \(A \); geometric multiplicity of \(1 \)

\(= \) there is a unique \(1 \times 1 \) Jordan block associated with \(\lambda_{pf} \).

(4) \(\lambda_{pf} \) has a positive eigenvector \(\nu_{pf} \) associated with it

and every nonnegative eigenvector of \(A \) must be a multiple of \(\nu_{pf} \).
In particular, if A is aperiodic ($p = 1$), then

$$\lambda_p > |\lambda|$$

for every other eigenvalue.

Application

Let $A \in \mathbb{R}^{n \times n}$ be primitive (= irreducible & aperiodic) with Perron-Frobenius eigenvalue λ. Then

$$\lim_{k \to \infty} \left(\frac{A}{\lambda} \right)^k = v w'$$

right and left

where v and w are eigenvectors of A associated with λ and normalized such that $w'v = 1$.
If \(x > 0 \), then

\[
A^k x \approx \lambda^k (w' x) v
\]

\[\uparrow\]

approximately equal

\[= V w' x \]

projection