Homework Set #1
(Due: Wednesday, January 24, 2018)

1. Linear functions over F^n.
 (a) Show that the function $f : F^n \rightarrow F^m$ defined by $f(x) = Ax$, where $A \in F^{m \times n}$, is linear.
 (b) Show than any linear function $f : F^n \rightarrow F^m$ has a representation $f(x) = Ax$ for some $A \in F^{m \times n}$.
 (c) Show that the representation in part (b) is unique by proving that $Ax = Bx$ for every x implies that $A = B$.

2. A linear function from convolution. Suppose that real-valued sequences $\{u(n)\}_{n=-\infty}^{\infty}$ and $\{v(n)\}_{n=-\infty}^{\infty}$ represent the input and output signals of a discrete-time linear time-invariant system with impulse response $h(n) \in \mathbb{R}$, $n \in \mathbb{Z}$. We assume that $h(n) = 0$ for $n < -N$ or $n > N$. Then, $\{u(n)\}$ and $\{v(n)\}$ are related via convolution as
 \[v(n) = \sum_{k=-N}^{N} h(k)u(n-k), \quad n \in \mathbb{Z}. \]
 Suppose that $u(n) = 0$ for $n < 0$, and define
 \[x = \begin{bmatrix} u(0) \\ u(1) \\ \vdots \\ u(N) \end{bmatrix} \quad \text{and} \quad y = \begin{bmatrix} v(0) \\ v(1) \\ \vdots \\ v(N) \end{bmatrix}. \]
 Thus x and y are vectors that capture $N + 1$ values of the input and output signals, respectively.
 (a) Find the matrix T such that $y = Tx$ in terms of $h(n)$.
 (b) Describe the structure of T. Matrices of this structure is said to be Toeplitz.

3. Adjacency graph. Consider a simple graph (an undirected graph with no self loops or multiple edges) with n vertices. Let $A \in \mathbb{R}^{n \times n}$ be the adjacency graph, defined by
 \[A_{ij} = \begin{cases} 1 & \text{if there is an edge between vertex } i \text{ and vertex } j, \\ 0 & \text{otherwise}. \end{cases} \]
 Note that $A = A^T$ and $A_{ii} = 0$, $i = 1, 2, \ldots, n$, since there are no self loops. Let $B = A^k$, where $k \in \mathbb{Z}$. Given a simple interpretation of B_{ij} in terms of the original graph and k. (Hint: Use the concept of a path between two nodes.)
4. **Matrix multiplication.** Let \(A, B \in \mathbb{R}^{n \times n} \). Prove or provide a counterexample to each of the following statements.

 (a) If \(AB = 0 \), then \(A = 0 \) or \(B = 0 \).
 (b) If \(A^2 = 0 \), then \(A = 0 \).
 (c) If \(A^T A = 0 \), then \(A = 0 \).

5. **Affine functions.** A function \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) is said to be **affine** if for any \(x, y \in \mathbb{R}^n \) and any \(\alpha, \beta \in \mathbb{R} \) with \(\alpha + \beta = 1 \), we have

 \[
 f(\alpha x + \beta y) = \alpha f(x) + \beta f(y).
 \]

 Note that without the restriction \(\alpha + \beta = 1 \), this would be the definition of linearity.

 (a) Suppose that \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \). Show that the function \(f(x) = Ax + b \) is affine.
 (b) Prove the converse, namely, show that any affine function \(f \) can be represented uniquely as \(f(x) = Ax + b \) for some \(A \in \mathbb{R}^{m \times n} \) and \(b \in \mathbb{R}^m \).

 (Hint: Consider the linearity of the function \(g(x) = f(x) - f(0) \).)

6. **Zero vector.** Using the vector space axioms, show that the zero vector (additive identity) \(0 \) in any vector space \(V \) over \(F \) must satisfy \(\alpha \cdot 0 = 0 \) for every \(\alpha \in F \).

7. **Symmetric and Hermitian matrices.** A square matrix \(A \) is said to be **symmetric** if its transpose \(A^T \) satisfies \(A^T = A \), and a complex-valued square matrix \(A \) is said to be **Hermitian** if its conjugate transpose \(A^H = (A^*)^T = A^T \) satisfies \(A^H = A \). Thus, a real-valued square matrix \(A \) is symmetric if and only if it is Hermitian. Which of the following is a vector space?

 (a) The set of all \(n \times n \) real-valued symmetric matrices over \(\mathbb{R} \).
 (b) The set of all \(n \times n \) complex-valued symmetric matrices over \(\mathbb{C} \).
 (c) The set of all \(n \times n \) complex-valued Hermitian matrices over \(\mathbb{R} \).
 (d) The set of all \(n \times n \) complex-valued Hermitian matrices over \(\mathbb{C} \).

 For each case, either verify that it is a vector space or prove otherwise.

8. **Differentiation of polynomials.** Let \(\mathcal{P}_n \) be the vector space consisting of all polynomials of degree \(\leq n \) with real coefficient.

 (a) Show that the monomials \(x^i, i = 0, 1, \ldots, n \), form a basis for \(\mathcal{P}_n \).
 (b) Consider the transformation \(T : \mathcal{P}_n \rightarrow \mathcal{P}_n \) defined by

 \[
 T(p(x)) = \frac{dp(x)}{dx}.
 \]

 For example, \(T(1 + 3x + x^2) = 3 + 2x \). Show that \(T \) is linear.
 (c) Using \(\{1, x, \ldots, x^n\} \) as a basis, represent the transformation in part (b) by a matrix \(A \in \mathbb{R}^{(n+1) \times (n+1)} \). Find the rank of \(A \).
9. Subspaces. Let \(\mathcal{V} \) and \(\mathcal{W} \) be subspaces of a vector space. Which of the following is also a subspace?

(a) Minkowski sum \(\mathcal{V} + \mathcal{W} = \{v + w : v \in \mathcal{V}, w \in \mathcal{W}\} \).
(b) \(\mathcal{V} \cap \mathcal{W} \).
(c) \(\mathcal{V} \cup \mathcal{W} \).

For each case, either verify that it is a subspace or prove otherwise.

10. Bases. Find a basis for each of the following subspaces of \(\mathbb{R}^4 \).

(a) All vectors whose components are equal.
(b) All vectors whose components sum to zero.
(c) All vectors orthogonal to both \(\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T \) and \(\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T \).
(d) All vectors spanned by \(\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}^T \), \(\begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}^T \), \(\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}^T \), and \(\begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}^T \).

Repeat parts (a)–(d) for \(\mathbb{F}_2^4 \) instead of \(\mathbb{R}^4 \).

11. Orthogonal complement of a subspace. Suppose that \(\mathcal{V} \) is a subspace of \(\mathbb{F}^n \). Let \(\mathcal{V}^\perp = \{x \in \mathbb{F}^n : x^Ty = 0, \forall y \in \mathcal{V}\} \) be the set of vectors orthogonal to every element in \(\mathcal{V} \).

(a) Verify that \(\mathcal{V}^\perp \) is a subspace of \(\mathbb{F}^n \).
(b) Suppose that \(\mathcal{V} = \text{span}(v_1, v_2, \ldots, v_k) \) for some \(v_1, v_2, \ldots, v_k \in \mathbb{F}^n \). Express \(\mathcal{V} \) and \(\mathcal{V}^\perp \) as subspaces induced by the matrix \(A = [v_1 \ v_2 \ \cdots \ v_k] \in \mathbb{F}^{n \times k} \) and its transpose \(A^T \).
(c) Show that every \(x \in \mathbb{F}^n \) can be expressed uniquely as \(x = v + v^\perp \), where \(v \in \mathcal{V} \) and \(v^\perp \in \mathcal{V}^\perp \). (Hint: Let \(v \) be the projection of \(x \) on \(\mathcal{V} \).)
(d) Show that \((\mathcal{V}^\perp)^\perp = \mathcal{V} \).
(e) Show that \(\dim(\mathcal{V}) + \dim(\mathcal{V}^\perp) = n \).
(f) Show that \(\mathcal{V} \subseteq \mathcal{W} \) for another subspace \(\mathcal{W} \) implies \(\mathcal{W}^\perp \subseteq \mathcal{V}^\perp \).

12. Halfspace. Suppose that \(a, b \in \mathbb{R}^n \) are two given points. Show that the set of points in \(\mathbb{R}^n \) that are closer to \(a \) than \(b \) is a halfspace, i.e.,

\[\{x : |x - a| \leq |x - b|\} = \{x : c^Tx \leq d\} \]

for appropriate \(c \in \mathbb{R}^n \) and \(d \in \mathbb{R} \).

(a) Find \(c \) and \(d \) explicitly in terms of \(a \) and \(b \).
(b) Draw a picture showing \(a, b, c, \) and the halfspace.
13. Parity check codes. Let

\[G = \begin{bmatrix} I \\ A \end{bmatrix} \in \mathbb{F}_2^{n \times k}, \]

where \(A \in \mathbb{F}_2^{(n-k) \times k} \) and \(n \geq k \). Suppose that a \(k \)-bit message \(x \in \mathbb{F}_2^k \) is encoded into an \(n \)-bit codeword \(y = Gx \in \mathbb{F}_2^n \). This is an example of an \((n, k)\) binary linear parity check code. In this context, \(G \) is referred to as a generator matrix of the code and its range \(\mathcal{R}(G) \) is referred to as the set of codewords or the codebook. The additional \(n - k \) bits, or parity bits, provide redundant information that can be used for correction (or detection) of errors that occur to the codewords.

(a) Find \(|\mathcal{R}(G)| \) and interpret this value in terms of the codewords of the \((n, k)\) code.

(b) Let \(H = [A \quad I] \in \mathbb{F}_2^{(n-k) \times n} \). Show that \(HG = 0 \).

(c) Show that \(\mathcal{N}(H) = \mathcal{R}(G) \), namely, \(y \) is a codeword if and only if \(Hy = 0 \). For this reason, \(H \) is referred to as a parity check matrix of the code.

(d) Show that \(\mathcal{R}(G) \) and \(\mathcal{R}(H^T) \) are orthogonal complements of each other.

(e) Consider the code with generator matrix \(H^T \) that encodes \((n-k)\)-bit messages into \(n \)-bit codewords. This \((n, n-k)\) code is said to be dual to the original \((n, k)\) code with generator matrix \(G \). Find a parity check matrix \(P \) of the dual code, that is, a matrix \(P \) that satisfies \(Py = 0 \) if and only if \(y \) is a codeword of the dual code.