Homework Set #4

1. Let $a, b \geq 0$ and

 \[f(x) = (x + a) \log(x + b) - x \log x. \]

 (a) Show that $f(x)$ is increasing in $x > 0$.
 (b) Show that $f(x) \leq a \log(x + b) + b \log e$ for $x > 0$.

2. Let $c(x^n)$ be the number of complete phrases in the Lempel–Ziv parsing of a sequence x^n.
 (a) Show that
 \[c(x^n) \geq \left\lceil -1 + \frac{\sqrt{8n + 1}}{2} \right\rceil \geq \sqrt{2} n - 2. \]
 (b) Show that for any $\epsilon > 0$, if
 \[c \geq \frac{n+1}{\log(n+1) - (1+\epsilon) \log \log(n+1)}, \]
 then $c \log c > n$ for $n \geq 1$. Conclude that $c \log c \leq n$ implies
 \[c \leq \frac{n+1}{\log(n+1) - \log \log(n+1)}. \]
 (c) Let $\mathcal{X} = \{0, 1\}$ and k^* be the largest k such that $n \geq (k-1)2^{k+1} + 2$. Show that
 \[c(x^n) \leq 2^{k^*+2} - 3. \]
 (d) Using parts (b) and (c), show that
 \[c(x^n) \leq \frac{2(n+4)}{(\log(n+4) - 2) - \log(\log(n+4) - 2)}. \]
 (e) Generalize the result in (d) to the case $|\mathcal{X}| = m \geq 2$.

3. Polya’s urn. Suppose that we have an urn containing one ball labeled 0 and one ball labeled 1. We draw a ball at random from the urn and observe its label X_1. If $X_1 = 0$, we put the drawn ball plus another ball labeled 0 into the urn. If $X_1 = 1$, we put the drawn ball plus another ball labeled 1 into the urn. We then repeat this process. At the n-th stage, we draw a ball at random from the urn with $(n+1)$ balls, note its label X_n, and put the drawn ball plus another ball with the same label into the urn.
 (a) Show that $X = (X_n)_{n=1}^{\infty}$ is stationary.
(b) Show that X is exchangeable, namely, the distribution of (X_1, \ldots, X_n) is equal to that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for every permutation σ and $n = 1, 2, \ldots$.

(c) Find the n-th order pmf $p(x^n)$.

(d) Find the conditional pmf $p(x_{n+1}|x^n)$ of X_{n+1} given $\{X^n = x^n\}$.

(e) Find the entropy rate of X.

(f) Show that X is not ergodic by proving that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = Z \text{ a.s.},$$

where $Z \sim U[0,1]$.

4. Show that the Lempel–Ziv probability measure Q_{LZ} is mean universal (w.r.t. the class of all stationary ergodic processes).

5. **Lempel–Ziv process.** Let $X = (X_n)_{n=1}^\infty$ be the Lempel–Ziv process.

 (a) Show that $P(X_n = 1) = 1/2$, $n = 1, 2, \ldots$.

 (b) Given $\{X^n = x^n = (y^c, z)\}$, where y^c is the sequence of complete phrases in x^n, find the conditional pmf $p(x_{n+1}|y^c, z)$ in terms of y^c and z.

 (c) Let $N_1 = 0$ and $N_i, i = 2, 3, \ldots$, be the stopping time at which X^{N_i} is parsed into exactly i complete phrases, i.e., $X^{N_i} = Y^i$. Define

 $$U_i = X_{N_i+1}, \quad i = 1, 2, \ldots.$$

 Is $U = (U_n)_{n=1}^\infty$ stationary? Find the n-th order pmf $p(u^n)$. Compare the answer with Pólya’s urn model.

 (d) More generally, let $z \in X^k$ and let $N_i, i = 1, 2, \ldots$, be the stopping time at which X^{N_i} is parsed into exactly i complete phrases and the remainder z, i.e., $X^{N_i} = (Y^i, z)$. Define

 $$U_i = X_{N_i+1}, \quad i = 1, 2, \ldots.$$

 Find the n-th order pmf $p(u^n)$.
