Homework Set #2

1. Let \((q(x^n))_{n=1}^{\infty}\) be pointwise universal w.r.t. \(P\), and \(u(x^n) \equiv 1/|\mathcal{X}|^n\) be the uniform probability density. Show that \((q'(x^n))_{n=1}^{\infty}\), where
\[
q'(x^n) = \frac{n-1}{n} q(x^n) + \frac{1}{n} u(x^n),
\]
is both universal and pointwise universal w.r.t. \(P\).

2. Let \(a, b \geq 0\) and
\[
f(x) = (x + a) \log(x + b) - x \log x.
\]
(a) Show that \(f(x)\) is increasing in \(x > 0\).
(b) Show that \(f(x) \leq a \log(x + b) + b \log e\) for \(x > 0\).

3. Let \(c(x^n)\) be the number of complete phrases in the Lempel–Ziv parsing of a sequence \(x^n\).
 (a) Show that
 \[
c(x^n) \geq \left\lceil \frac{-1 + \sqrt{8n + 1}}{2} \right\rceil \geq \sqrt{2n} - 2.
 \]
 (b) Show that for any \(\epsilon > 0\), if
 \[
c \geq \frac{n + 1}{\log(n + 1) - (1 + \epsilon) \log \log(n + 1)},
 \]
 then \(c \log c > n\) for \(n \geq 1\). Conclude that \(c \log c \leq n\) implies
 \[
c \leq \frac{n + 1}{\log(n + 1) - \log \log(n + 1)}.
 \]
 (c) Let \(\mathcal{X} = \{0, 1\}\) and \(k^*\) be the largest \(k\) such that \(n \geq (k - 1)2^{k+1} + 2\). Show that
 \[
c(x^n) \leq 2^{k^*+2} - 3.
 \]
 (d) Using parts (b) and (c), show that
 \[
c(x^n) \leq \frac{2(n + 4)}{(\log(n + 4) - 2) - \log(\log(n + 4) - 2)}.
 \]
 (e) Generalize the result in (d) to the case \(|\mathcal{X}| = m \geq 2\).
4. **Pólya’s urn.** Suppose that we have an urn containing one ball labeled 0 and one ball labeled 1. We draw a ball at random from the urn and observe its label X_1. If $X_1 = 0$, we put the drawn ball plus another ball labeled 0 into the urn. If $X_1 = 1$, we put the drawn ball plus another ball labeled 1 into the urn. We then repeat this process. At the n-th stage, we draw a ball at random from the urn with $(n + 1)$ balls, note its label X_n, and put the drawn ball plus another ball with the same label into the urn.

(a) Show that $X = (X_n)_{n=1}^{\infty}$ is stationary.

(b) Show that X is exchangeable, namely, the distribution of (X_1, \ldots, X_n) is equal to that of $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ for every permutation σ and $n = 1, 2, \ldots$.

(c) Find the n-th order pmf $p(x^n)$.

(d) Find the conditional pmf $p(x_{n+1}|x^n)$ of X_{n+1} given $\{X^n = x^n\}$.

(e) Find the entropy rate of X.

(f) Show that X is not ergodic by proving that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} X_i = Z \text{ a.s.,}$$

where $Z \sim U[0,1]$.

5. Show that the Lempel–Ziv probability measure Q_{LZ} is mean universal (w.r.t. the class of all stationary ergodic processes).

6. **Lempel–Ziv process.** Let $X = (X_n)_{n=1}^{\infty}$ be the Lempel–Ziv process.

(a) Show that $P(X_n = 1) = 1/2$, $n = 1, 2, \ldots$.

(b) Given $\{X^n = x^n = (y^c, z)\}$, where y^c is the sequence of complete phrases in x^n, find the conditional pmf $p(x_{n+1}|y^c, z)$ in terms of y^c and z.

(c) Let $N_1 = 0$ and N_i, $i = 2, 3, \ldots$, be the stopping time at which X^{N_i} is parsed into exactly i complete phrases, i.e., $X^{N_i} = Y^i$. Define

$$U_i = X_{N_i+1}, \quad i = 1, 2, \ldots$$

Is $U = (U_n)_{n=1}^{\infty}$ stationary? Find the n-th order pmf $p(u^n)$. Compare the answer with Pólya’s urn model.

(d) More generally, let $z \in \mathcal{X}^k$ and let N_i, $i = 1, 2, \ldots$, be the stopping time at which X^{N_i} is parsed into exactly i complete phrases and the remainder z, i.e., $X^{N_i} = (Y^i, z)$. Define

$$U_i = X_{N_i+1}, \quad i = 1, 2, \ldots$$

Find the n-th order pmf $p(u^n)$.

2