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Abstract—Uplink and downlink cloud radio access networks
are modeled as two-hop K-user L-relay networks, whereby
small base-stations act as relays and are connected to a central
processor via orthogonal links of finite capacity. Simplified
versions of noisy network coding and distributed decode–forward
are used to establish inner bounds on the capacity region for
uplink and downlink communications, respectively. Through a
careful analysis, the uplink inner bound is shown to achieve the
cutset bound on the capacity region universally within O(logL)
bits per user. The downlink inner bound achieves the cutset
bound with a slightly looser gap of O(log(KL)). These tight
per-user gap results are extended to the situations in which the
nodes have multiple antennas.

I. INTRODUCTION

With ever-increasing demands for higher data rates, better
coverage, and reliability of communication for a large number
of devices, novel network protocols and architectures are
expected to play an important role in future communication
systems. The cloud radio access network (C-RAN) architecture
[1] is one of the promising candidates, in which communica-
tion over a group of cells is coordinated by a cloud-based
central processor. Fig. 1 depicts C-RAN uplink and downlink
systems schematically. Base-stations in the C-RAN architec-
ture, unlike traditional wireless systems, do not perform the
complete processing locally, but are instead connected to the
central processor through wired or wireless fronthaul links.

If these links have unbounded capacities, the C-RAN can
be viewed as a “distributed” multiple input multiple output
(MIMO) system. Base-stations act as remote radio heads
that use beamforming to coordinate transmission and mitigate
interference among multiple cells. For the more realistic situ-
ation of limited capacities, the optimal beamforming solution
is typically computed, assuming infinite fronthaul capacities,
and then compressed individually, which is then applied at the
base-stations.

As an alternative to this greedy beamforming-compression
approach, this paper investigates the optimal coding scheme
for the entire system by modeling the C-RAN as a two-hop
relay network. In this model, the base-stations act as relays
that summarize the received signals to the central processor
(uplink) and transmit the prescribed signals from the central
processor (downlink) [1].

The two-hop relay network model for the uplink C-RAN
was studied by Zhou et al. [2], who applied network compress–
forward [3] to this case and showed, by optimizing over quan-
tizers, that under some symmetry assumptions, it is possible
to achieve a sum rate gap from the cutset bound that is

User devices
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processor
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Fig. 1: (a) Uplink and (b) downlink cloud radio access network

linear in the number of base-stations. Sanderovich et al. [4]
used the same scheme without optimization and analyzed the
large-user asymptotics of achievable rates under the scenario
where each fronthaul link has a fixed capacity. Zhou et al.
[5] subsequently showed that under a sum-capacity constraint
on the fronthaul links, the coding scheme in [4] and [2]
can be simplified through successive cancellation decoding,
generalizing an earlier single-user multiple relay scheme [6].

In this paper, we apply noisy network coding [7] to the
uplink two-hop relay network model and the scheme achieves
within O(logL) bits per user from the capacity region, where
L is the number of relays (base-stations), regardless of the
channel gain matrix, power constraint, and the number of
users. Compared to network compress–forward, noisy network
coding is simpler in that relays send the compression indices
of the received signals directly without binning (hashing).
This simpler operation inter alia achieves higher rates than
network compress–forward for general networks, but for the
uplink C-RAN, the achievable rate regions coincide. Hence,
our main contribution for the uplink C-RAN can be viewed
as a refinement of the capacity analyses in [4] and [2].

For the downlink, a variety of coding schemes have been
proposed. Hong and Caire [8] studied a low-complexity re-
verse compute–forward scheme for symmetric rates. Liu et
al. [9] applied network coding and beamforming to the down-
link model with a noiseless multi-hop fronthaul. Motivated
by the MAC–BC duality, Liu et al. [10] proposed suboptimal
compression-based schemes and established a duality between
achievable rate regions for the uplink and downlink C-RANs.

In this paper, as an alternative approach, we specialize
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and simplify the distributed decode–forward coding scheme
[11] to the downlink C-RAN with capacity-limited single-hop
fronthaul. In this scheme, multicoding at the encoder (as in
Marton coding for broadcast channels [12]) is coupled with
coding for fronthaul links, which allows more efficient coor-
dination among the transmitted signals at the base-stations.
We show that our rate region achieves a per-user gap of
1
2 (1.45+log(LK)) from the cutset bound, where L and K are
the number of relays and users. This refines the best-known
linear gap from capacity for this model (implicit in [10]).

The rest of the paper is organized as follows. Section II
studies the uplink model. Section II-A describes the general
inner and outer bounds on the capacity region; Section II-B
specializes the noisy network coding inner bound to the
Gaussian network model and estblishes the capacity gap; and
Section II-C generalizes the gap result to the MIMO case.
Section III parallels the same flow for the downlink C-RAN.
Throughout the paper, we follow the notation in [12]. In
addition, ||A||F :=

√
tr(AAT ) =

√
tr(ATA) denotes the

Frobenius norm of a matrix A. All logarithms are to base 2
and all information measures are in bits.

II. UPLINK COMMUNICATION

A. General Model

We model the uplink C-RAN as a two-hop relay network in
Fig. 2, where the first hop, namely, the (wireless) channel from
the user devices to the radio heads, is modeled as a discrete
memoryless network p(yL|xK), and the second hop, namely,
the channel from the radio heads to the central processor,
consists of orthogonal links of capacities C1, . . . , CL bits
per transmission, decoupled from the first hop. To be more
precise, the channel output at the central processor (receiver)
is (W1, . . . ,WL), where Wl ∈ [1 : 2nCl ] is a reliable
estimate of what relay l communicates to the receiver over
n transmissions. We assume without loss of generality that
these communication links are noiseless.

CLXK

Y1

YL

Yp(yL|xK)

X1 C1

Fig. 2: Uplink network model

A (2nR1 , . . . , 2nRK , n) code for this network consists of
K message sets [1 : 2nR1 ], . . . , [1 : 2nRK ]; K encoders,
where encoder k ∈ [1 : K] assigns a codeword xnk to each
mk ∈ [1 : 2nRk ]; L relay encoders, where relay encoder
l ∈ [1 : L] assigns an index wl ∈ [1 : 2nCl ] to each received
sequence ynl ; and a decoder that assigns message estimates
(m̂1, . . . , m̂K) to each index tuple wL. We assume that the
messages M1, . . . ,MK are uniformly distributed and indepen-
dent of each other. The average probability of error is defined
as P (n)

e = P (∪Kk=1{M̂k 6= Mk}). A rate tuple (R1, . . . , RK)
is achievable if there is a sequence of (2nR1 , . . . , 2nRK , n)

codes with limn→∞ P
(n)
e = 0. The capacity region is defined

as the closure of the set of all achievable rate tuples.
We have the following inner bound [4] on the capacity

region of this network.
Proposition 1: A rate tuple (R1, . . . , RK) is achievable if∑

k∈S1

Rk < I(X(S1); Ŷ (Sc2)|X(Sc1))

+
∑
l∈S2

Cl −
∑
l∈S2

I(Yl; Ŷl|XK) (1)

for all S1 ⊆ [1 : K] and S2 ⊆ [1 : L] for some pmf∏K
k=1 p(xk)

∏L
l=1 p(ŷl|yl).

This inner bound was established by specializing the net-
work compress–forward scheme in [6]. Roughly speaking,
each relay compresses its received sequence and sends the
bin index of the compression index. A more straightforward
scheme can be developed by specializing noisy network coding
[7] and simplifying it to our network model. This simplified
coding scheme and its analysis will be presented in a longer
version of this manuscript and is omitted here. The cutset
bound [13] for this network can be characterized by the set of
(R1, . . . , RK) such that∑

k∈S1

Rk < I(X(S1);Y (Sc2)|X(Sc1)) +
∑
l∈S2

Cl (2)

for all S1 ⊆ [1 : K] and S2 ⊆ [1 : L] for some pmf p(xK).

B. Gaussian Model

We now assume that

Y L = GXK + ZL,

where G ∈ RL×K is a (deterministic) channel gain matrix
and ZL is a vector of independent N(0, 1) noise components.
Assume the average power constraint P on each sender, i.e.,

n∑
i=1

x2ki(mk) ≤ nP, mk ∈ [1 : 2nRk ], k ∈ [1 : K].

Our main goal of this section is to quantify how well network
compress–forward (or noisy network coding), with achievable
rates in (1), performs for this Gaussian network. In particular,
we bound the per-user rate gap ∆ such that if (R1, . . . , RK)
lies in the cutset bound, the rate tuple ((R1−∆), . . . , (RK −
∆)) will lie in the inner bound in (1), regardless of G and P .

It can be shown that Proposition 1 can be simplified to
establish the achievability of all (R1, . . . , RK) such that∑

k∈S1

Rk <
1

2
log
∣∣∣ P

σ2 + 1
GSc

2 ,S1G
T
Sc
2 ,S1

+ I
∣∣∣

+
∑
l∈S2

Cl −
|S2|

2
log
(

1 +
1

σ2

)
=: fin(S1, S2), (3)

where GSc
2 ,S1

is the submatrix of G formed by the rows
with indices in Sc2 and the columns with indices in S1. This
follows by considering XK to be a vector of i.i.d. N(0, P )
random variables, and setting Ŷl = Yl + Ẑl, l ∈ [1 : L],
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where Ẑl ∼ N(0, σ2). Note that for any S2 ⊆ [1 : L]
and S′1 ⊆ S1, GSc

2 ,S1
GTSc

2 ,S1
� GSc

2 ,S
′
1
GTSc

2 ,S
′
1

and thus,
fin(S′1, S2) ≤ fin(S1, S2), which implies that

min
S2

fin(S′1, S2) ≤ min
S2

fin(S1, S2). (4)

The cutset bound in (2) can also be simplified and relaxed as∑
k∈S1

Rk <
1

2
log
∣∣∣GSc

2 ,S1
ΣS1|Sc

1
GTSc

2 ,S1
+ I
∣∣∣+

∑
l∈S2

Cl

(a)

≤ 1

2
log
∣∣∣PGSc

2 ,S1
GTSc

2 ,S1
+ I
∣∣∣+
|S1|

2
+
∑
l∈S2

Cl

=: fout(S1, S2), (5)

where (a) follows in a similar manner as equation (34) in
Section V of [11], and ΣS1|Sc

1
is the conditional covariance

matrix of X(S1) given X(Sc1). For this Gaussian network
model, we have the following upper bound on the gap from
capacity.

Theorem 1: For every G ∈ RL×K and every P ∈ R+, if
a rate tuple (R1, . . . , RK) is in the cutset bound (5), then the
rate tuple ((R1−∆)+, . . . , (RK −∆)+) is achievable, where

∆ ≤ 1

2
(2.45 + logL).

Proof: Let

∆ := max
S1⊆[1:K]
S1 6=∅

minS2
fout(S1, S2)−minS2

fin(S1, S2)

|S1|
. (6)

Suppose that (R1, . . . , RK) lies in the cutset bound, and let
A = {k : Rk > ∆}. Then, for every nonempty S1 ⊆ [1 : K],∑
k∈S1

(Rk −∆)+

=
∑

k∈S1∩A

(Rk −∆)

=
∑

k∈S1∩A

Rk − |S1 ∩ A|∆

(a)

≤ min
S2

[
fout(S1 ∩ A, S2)

]
−
(

min
S2

fout(S1 ∩ A, S2)−min
S2

fin(S1 ∩ A, S2)
)

= min
S2

fin(S1 ∩ A, S2)

(b)

≤ min
S2

fin(S1, S2),

where (a) follows from the cutset bound (5), and the fact that

∆ = max
S1

minS2
fout(S1, S2)−minS2

fin(S1, S2)

|S1|

≥ minS2
fout(S1 ∩ A, S2)−minS2

fin(S1 ∩ A, S2)

|S1 ∩ A|
,

and (b) follows from (4). Hence, ∆, as defined in (6) satisfies
the requirements of Theorem 1. Now, for every σ2 > 0,

∆ = max
S1

minS2
fout(S1, S2)−minS2

fin(S1, S2)

|S1|
(a)

≤ max
S1,S2

fout(S1, S2)− fin(S1, S2)

|S1|

(b)
= max

S1,S2

1

2|S1|

[
log

∣∣∣PGSc
2 ,S1G

T
Sc
2 ,S1

+ I
∣∣∣∣∣∣ P

σ2+1GSc
2 ,S1

GTSc
2 ,S1

+ I
∣∣∣ + |S1|

(c)
= max

S1,S2

1

2|S1|

[ rank(GSc
2,S1

)∑
i=1

log
Pβi + 1
P

σ2+1βi + 1
+ |S1|

+ |S2| log
(

1 +
1

σ2

)]
(d)

≤ max
k∈[1:K]
l∈[0:L]

[min{L− l, k}
2k

log(1 + σ2)

+
l

2k
log
(

1 +
1

σ2

)
+

1

2

]
. (7)

Here, (a) follows from the fact that for functions f and g
defined over a finite set X , such that g ≥ f everywhere on
X , minx∈X g(x) − minx∈X f(x) ≤ maxx∈X [g(x) − f(x)],
(b) follows from (5) and (3), and in (c), β1, β2, . . . are the
(non-negative) eigen-values of GSc

2 ,S1G
T
Sc
2 ,S1

. Finally, in (d),
we take |S1| = k, |S2| = l, and upper-bound rank(GSc

2 ,S1)
by min{L− l, k}. The maximization in (7) yields{

1
2 log(σ2 + 1) + L−1

2 log(1 + 1
σ2 ) + 1

2 , σ2 ≥ 1,
L
2 log(1 + 1

σ2 ) + 1
2 , σ2 ≤ 1.

Since this holds for every σ2 > 0, we set σ2 = L − 1 for
L ≥ 2 to obtain

∆ ≤ 1

2
logL+

L− 1

2
log
(

1 +
1

L− 1

)
+

1

2

≤ 1

2
logL+

L− 1

2
· 1

(L− 1) ln 2
+

1

2

≤ 1

2
(2.45 + logL). (8)

For L = 1, we take σ2 = 1 to obtain ∆ ≤ 1 bit. This, together
with (8), establishes Theorem 1.

C. MIMO Model

We now generalize Theorem 1 to the situation in which the
senders and relays have multiple antennas. For simplicity, we
assume that every sender has t antennas and every relay has
r antennas. We also assume the average power constraint P
at each transmit antenna.

Proposition 2: If (R1, . . . , RK) lies in the cutset bound,
then ((R1 −∆)+, . . . , (RK −∆)+) is achievable, where

∆ ≤
{
t
2

(
2.45 + log

(
Lr
t

))
, Lr > 2t

Lr+t
2 , Lr ≤ 2t.

(9)

Proof sketch: First assume that t = 1. In this case, the
sequence of steps leading to (3) and (5) go through almost
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unchanged, except for a slight change of notation in that
GSc

2 ,S1 is now the r|Sc2| × |S1| channel gain matrix from the
senders in S1 to the relays in Sc2. Also, the last term in (3)
becomes r|S2|

2 log
(

1 + 1
σ2

)
. The relation (7) now reads:

∆ ≤ max
k,l

[min{(L− l)r, k}
2k

log(1 + σ2)

+
lr

2k
log
(

1 +
1

σ2

)
+

1

2

]
.

Manipulating this expression as before, we show that ∆ ≤
1
2 (2.45 + log(Lr)).

For general r and t, (7) becomes

∆ ≤ max
k,l

[min{(L− l)r, kt}
2k

log(1 + σ2)

+
lr

2k
log
(

1 +
1

σ2

)
+
t

2

]
.

For Lr ≤ 2t, the maximization, followed by substituting
σ2 = 1, yields ∆ ≤ Lr+t

2 . For Lr > 2t and σ2 ≥ 1, the
maximization yields ∆ ≤ t

2 log(1+σ2)+Lr−t
2 log(1+ 1

σ2 )+ t
2 ;

by setting σ2 = Lr−t
t , we have

∆ ≤ Lr

2

( t

rL
log(Lr/t) +

Lr − t
Lr

log
(

1 +
t

Lr − t
))

+
t

2

≤ t

2

(
1 + log(Lr/t)

)
+
Lr − t

2
· t

(Lr − t) ln 2

=
t

2

(
2.45 + log(Lr/t)

)
,

which establishes (9).

III. DOWNLINK COMMUNICATION

A. General Model

Similar to the uplink, we model the downlink C-RAN as a
two-hop relay network in Fig. 3, where the first hop (central
processor to radio heads) consists of orthogonal noiseless links
of capacities C1, . . . , CL bits per transmission and the second
hop (radio heads to user devices) is modeled as a discrete
memoryless network p(yK |xL).

A (2nR1 , . . . , 2nRK , n) code for this network consists of
K message sets [1 : 2nR1 ], . . . , [1 : 2nRK ]; an encoder
wL(m1, . . . ,mK) ∈ ∏L

l=1[1 : 2nCl ]; relay encoders xnl (wl),
l ∈ [1 : L]; and decoders m̂k(ynk ) ∈ [1 : 2nRk ], k ∈ [1 : K].
The average probability of error, achievability of a rate tuple,
and the capacity region are defined as before.

The following inner bound can be established by specializ-
ing the distributed decode–forward scheme [11]. We describe
a simplified version of the coding scheme in the Appendix.

Proposition 3: A rate tuple (R1, . . . , RK) is achievable, if∑
k∈Sc

2

Rk < I(X(S1);U(Sc2)|X(Sc1)) +
∑
l∈Sc

1

Cl

−
∑
k∈Sc

2

I(Uk;XL|Yk)

for all S1 ⊆ [1 : L] and S2 ⊆ [1 : K] for some pmf∏L
l=1 p(xl)

∏K
k=1 p(uk|xL).

CL

Y1

YK

X1

XL

p(yK|xL)X

C1

Fig. 3: Downlink network model

The cutset bound for this network is characterized by∑
k∈Sc

2

Rk < I(X(S1);Y (Sc2)|X(Sc1)) +
∑
l∈Sc

1

Cl (10)

for all S1 ⊆ [1 : L] and S2 ⊆ [1 : K] for some pmf p(xL).

B. Gaussian Model

Similar to Section II-B, we now assume that Y K = GXL+
ZK , where G ∈ RK×L is a channel gain matrix and ZK

consists of i.i.d. N(0, 1) noise components, and assume the
average power constraint P at each relay. The rest of this
section is devoted to bounding the achievable per-user rate gap
∆ from the cutset bound. First, Proposition 3 can be simplified
to establish the achievability of all (R1, . . . , RK) such that∑

k∈Sc
2

Rk <
1

2
log
∣∣∣ P
σ2
GSc

2 ,S1
GTSc

2 ,S1
+ I
∣∣∣

+
∑
l∈Sc

1

Cl −
|Sc2|

2
log
(

1 +
1

σ2

)
=: Fin(S1, S2) (11)

for S1 ⊆ [1 : L] and S2 ⊆ [1 : K]. This follows by setting XL

to be a vector of i.i.d. N(0, P ) random variables and defining
UK = GXL + ẐK , where ẐK ∼ N(0, σ2I) is independent
of ZK . The cutset bound (10) simplifies to∑

k∈Sc
2

Rk <
1

2
log
∣∣∣GSc

2 ,S1ΣS1|Sc
1
GTSc

2 ,S1
+ I
∣∣∣+

∑
l∈Sc

1

Cl

=: Fout(S1, S2) (12)

for all S1 ⊆ [1 : L] and S2 ⊆ [1 : K].
We now have the following.
Theorem 2: For every G and P , if (R1, . . . , RK) is in

the cutset bound (12), then ((R1 − ∆)+, . . . , (RK − ∆)+)
is achievable, where

∆ ≤ 1

2
(1.45 + log(KL)).

Proof: Note that unlike (4), Fin is not necessarily mono-
tonic. We overcome this difficulty by rephrasing the inner
bound (11) as ∑

k∈Sc
2

Rk < min
T2⊆S2

Fin(S1, T2). (13)

We observe that the right-hand side of (13) is increasing with
Sc2 for a fixed S1, so we can apply the technique developed in
Section II-B to compute an upper bound on ∆. We thus write

∆ = max
S2([1:K]

[
minS1

Fout(S1, S2)

|Sc2|
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− minS1
minT2⊆S2

Fin(S1, T2)

|Sc2|

]

≤ max
S1⊆[1:L]
S2([1:K]
T2⊆S2

Fout(S1, S2)− Fin(S1, T2)

|Sc2|

= max
S1⊆[1:L]
S2([1:K]
T2⊆S2

1

2|Sc2|

[
log

∣∣∣GSc
2 ,S1

ΣS1|Sc
1
GTSc

2 ,S1
+ I
∣∣∣∣∣∣ Pσ2GT c

2 ,S1
GTT c

2 ,S1
+ I
∣∣∣

+ |T c2 | log
(

1 +
1

σ2

)]

(a)

≤ max
S1⊆[1:L]
S2([1:K]
T2⊆S2

1

2|Sc2|

[
log

∣∣∣GSc
2 ,S1ΣS1G

T
Sc
2 ,S1

+ I
∣∣∣∣∣∣ Pσ2GSc

2 ,S1
GTSc

2 ,S1
+ I
∣∣∣

+ |T c2 | log
(

1 +
1

σ2

)]
, (14)

where (a) follows since ΣS1 � ΣS1|Sc
1

and for any matrix A
and α > 0, |I + αAAT | increases when we add more rows
to A. Writing ΣS1

= UΛUT , where U is orthogonal and Λ is
diagonal, and letting GSc

2 ,S1U =
[
b1 b2 · · · b|S1|

]
, where

b1, . . . , b|S1| are |Sc2|×1 vectors constrained by
∑|S1|
l=1 ||bl||2 =

||GSc
2 ,S1
||2F , we have

log
|GSc

2 ,S1ΣS1G
T
Sc
2 ,S1

+ I|
| Pσ2GSc

2 ,S1
GTSc

2 ,S1
+ I| = log

∣∣∣I +
∑|S1|
l=1 λlblb

T
l

∣∣∣∣∣∣I + P
σ2

∑|S1|
l=1 blb

T
l

∣∣∣
(a)

≤ log

∣∣∣I + P |S1|
∑|S1|
l=1 blb

T
l

∣∣∣∣∣∣I + P
σ2

∑|S1|
l=1 blb

T
l

∣∣∣
(b)
=

|Sc
2 |∑

k=1

log
1 + P |S1|µk

1 + P
σ2µk

≤ |Sc2| log
(
σ2|S1|

)
,

provided that σ2 ≥ 1
|S1| . Here, (a) follows since the trace of

ΣS1 is upper bounded by P |S1| and in (b), µ1, . . . , µ|Sc
2 | are

the (nonnegative) eigenvalues of
∑|S1|
l=1 blb

T
l . Continuing from

(14), we thus have

∆ ≤ max
S1⊆[1:L]
S2([1:K]
T2⊆S2

[ |T c2 | log
(

1 + 1
σ2

)
2|Sc2|

+
1

2
log
(
σ2|S1|

)]

=
K

2
log
(

1 +
1

σ2

)
+

1

2
log(σ2L).

This holds for every σ2 ≥ 1, so we set σ2 = K − 1 to obtain

∆ ≤ 1

2
logL+

1

2

(
K logK − (K − 1) log(K − 1)

)
(a)

≤ 1

2

(
logL+ logK +

1

ln 2

)
.

(a) follows since (d/dx)(x log x) = log x+ (1/ ln 2) and the
latter is an increasing function of x.

C. MIMO Model

As before, assume that every relay has t antennas and every
receiver has r antennas with average power constraint P at
each antenna. By slightly modifying the arguments of the
previous section, it can be shown that the following holds.

Proposition 4: If (R1, . . . , RK) lies in the cutset bound,
then ((R1 −∆)+, . . . , (RK −∆)+) is achievable, where

∆ ≤
{
r
2 (log(Lt) + logK + 1.45), Lt > r
Lt
2 (log r + logK + 1.45), Lt ≤ r.

APPENDIX

The following coding scheme is a specialization of dis-
tributed decode–forward to our general downlink C-RAN
model and achieves the inner bound in Proposition 3.

Codebook generation: Fix a pmf p(xL)
∏K
k=1 p(uk|xL). For

each wl, l ∈ [1 : L], generate xnl (wl) ∼
∏n
i=1 pXl

(xli). Define
auxiliary indices sk ∈ [1 : 2nR̃k ], k ∈ [1 : K]. Here, each R̃k
is some non-negative auxiliary rate. For each (mk, sk) ∈ [1 :

2nRk ] × [1 : 2nR̃k ] and k ∈ [1 : K], generate unk (mk, sk) ∼∏n
i=1 pUk

(uki).
Encoding: The encoder sends wL such that

(xn1 (w1), . . . , xnL(wL), un1 (m1, s1), . . . , unK(mK , sK)) ∈ T (n)
ε′ .

Relay encoding: Relay l transmits xnl (wl).
Decoding: Let ε > ε′. Upon receiving ynk , receiver k finds

m̂k such that (unk (m̂k, sk), ynk ) ∈ T (n)
ε for some sk.
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