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Abstract—Simplification methods are introduced for compos-
ite coding, which is an existing layered random coding technique
for the index coding problem. As the problem size grows,
the original number of composite indices grows exponentially
and the number of possible decoding configurations (decoding
sets) grows super exponentially, leading to considerably high
computational complexity. The proposed simplifications address
both issues and do not affect the performance (tightness) of
the coding scheme. Removing composite indices is achieved by
pairwise comparison of any two indices and removing one if
its corresponding rate can be transferred without loss to the
other in the expressions of the achievable rate region. Decoding
configurations are reduced by establishing a baseline or natural
decoding configuration, where no smaller decoding configuration
can provide a strictly larger rate region. A heuristic method is
also proposed for reducing the number of composite indices even
further, but possibly with some performance loss. Numerical
results demonstrate good performance with substantial reduc-
tion in complexity. To achieve the capacity region for all 9608
non-isomorphic index coding problems with n = 5, a single
natural decoding configuration per problem and less than 3 out
of 25 − 1 = 31 composite indices are sufficient, on average. In
only 31 problems, 7 to at most 10 composite indices are used.

I. INTRODUCTION

The index coding problem studies the optimal broadcast
rate of n messages from a server to multiple receivers with
side information. Since its introduction by Birk and Kol [1]
in 1998, the index coding problem has been recognized as
a canonical problem in network information theory and has
drawn considerable attention from many research communi-
ties. Various index coding schemes, broadly categorized into
linear or non-linear codes, have been proposed, which have in
turn established upper bounds on the optimal broadcast rate
(or inner bounds on the capacity region) of the index coding
problem; see [2] and the references therein. However, none
of the existing schemes is generally optimal. Particularly, it
has been shown in [3], [4] that linear index codes can be in
general outperformed by non-linear index codes.

One promising non-linear coding scheme is the composite
coding, a two-layer random coding scheme first proposed
in [5] and later enhanced in [6]. For obtaining an explicit
rate region or a weighted sum rate for a given index coding
problem, one has to solve a Fourier–Motzkin elimination
(FME) problem [7, Appendix D] or a linear program (LP).
As n increases, the computational complexity can become
a practical issue for composite coding. First, the number
of composite messages and their corresponding rates in the
expressions of the achievable rate region grows exponentially
with n. Second, the number of possibilities for the sets of
messages that each receiver can decode, which we collectively

refer to as decoding configurations, is on average super
exponential in the problem size. Therefore, it is imperative to
determine whether some of the composite messages and their
corresponding rates, and some of the decoding configurations
can be removed from the coding scheme and the computation
of the rate region achieved by it.

The main contribution of this paper is to introduce sim-
plification techniques for composite coding that address the
aforementioned issues. In Section IV-A, we propose a pair-
wise test between any two composite index rates, based on
examining the decoding constraints of composite coding, to
determine whether one of them can be removed without
sacrificing achievable rate performance. Besides, we present a
heuristic algorithm that can reduce the number of composite
indices even further, albeit with possible performance loss.
For a given problem, sufficiency of the heuristic algorithm
can be checked by comparing the obtained achievable rates
with necessary conditions on the rates, such as those given by
the maximal acyclic induced subgraph (MAIS) bound [8] or
a generally tighter polymatroidal bound [5]. In Section IV-B,
we introduce a minimal natural decoding configuration and
show that it suffices to consider only decoding configurations
that are supersets of the natural decoding configuration. In
Section V, we present numerical results for all proposed
simplification methods, which demonstrate their efficacy.

II. SYSTEM MODEL

Consider the index coding problem with n messages,
xi ∈ {0, 1}ti , i ∈ [n]

.
= {1, 2, . . . , n}. For brevity, when we

say message i, we mean message xi. Let Xi be the random
variable corresponding to xi. We assume that X1, . . . , Xn are
uniformly distributed and independent of each other. For any
K ⊆ [n], we use the shorthand notation xK to denote the
collection of messages whose index is in K. By convention
x∅ = ∅. There is a single server that contains all messages
x[n] and is connected to all receivers via a noiseless broadcast
link of normalized capacity C = 1. Let y be the output of
the server, which is a function of x[n]. There are n receivers,
where receiver i ∈ [n] wishes to obtain xi and knows xAi

as
side information for some Ai ⊆ [n] \ {i}.

We define a (t, r) = ((ti, i ∈ [n]), r) index code by

• an encoder φ :
∏

i∈[n]{0, 1}ti → {0, 1}r, which maps
the messages x[n] to an r-bit sequence y, and

• n decoders, one for each receiver i ∈ [n], such that ψi :
{0, 1}r ×

∏
k∈Ai
{0, 1}tk → {0, 1}ti maps the received

sequence y and the side information xAi to x̂i.
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We say that a rate tuple R = (Ri, i ∈ [n]) is achievable if
for every ε > 0, there exists a (t, r) index code such that

Ri ≤
ti
r
, i ∈ [n], (1)

and the probability of error satisfies

P{(X̂1, . . . , X̂n) 6= (X1, . . . , Xn)} ≤ ε. (2)

The capacity region C of this index coding problem is the
closure of the set of all achievable rate tuples R. The optimal
broadcast rate β is the reciprocal of the symmetric capacity

β =
1

Csym
=

1

max{R : (R, . . . , R) ∈ C }
. (3)

We will compactly represent an index coding instance by
a sequence (i|j ∈ Ai), i ∈ [n]. For example, for A1 = ∅,
A2 = {3}, and A3 = {2}, we write (1|−), (2|3), (3|2).

III. A BRIEF REVIEW OF COMPOSITE CODING

We briefly review the composite coding scheme from [5],
[6]. For clarity of exposition, we first consider the case in
which each receiver performs the decoding operation using a
fixed decoding configuration (fixed decoding message sets).
Then in Subsection III-B, we discuss the case of a variable
decoding configuration. The motivation for a simplified com-
posite coding scheme is described in Section III-C.

A. Fixed Decoding Configuration

Let r ∈ N, ti = drRie, i ∈ [n], and sK = drSKe, K ⊆
[n]. Here Ri is the rate of message i and SK is the rate of
composite index K (to be defined shortly). We set S∅ = 0
by convention.

Codebook generation. Step 1. For each K ⊆ [n], generate
a composite index wK(xK) drawn uniformly at random from
[2sK ]. For brevity, when we say composite index K, we mean
composite index wK(xK). Step 2. Generate the codeword
y(wK ,K ⊆ [n]) drawn uniformly at random from [2r].
The codebook {(wK(xK),K ⊆ [n]), y(wK ,K ⊆ [n])} is
revealed to all parties.

Encoding. To communicate messages x[n], the server
transmits y(wK(xK),K ⊆ [n]).

Receiver i decodes for a subset of messages indexed by
Di ⊆ [n] \ Ai, such that i ∈ Di. The tuple of decoding
message sets is denoted by D = (Di, i ∈ [n]) and referred to
as the decoding configuration. In this subsection, we assume
that the decoding configuration D is fixed.

Decoding. Step 1. Receiver i finds the unique composite
index tuple (ŵK ,K ⊆ [n]) such that y = y(ŵK ,K ⊆ [n]). If
there is more than one such tuple, it declares an error. Step 2.
Assuming that (ŵK ,K ⊆ [n]) is correct, receiver i finds the
unique message tuple x̂Di such that ŵK = wK(x̂K) for every
K ⊆ Di∪Ai. If there is more than one such tuple, it declares
an error.

The achievable rate tuple of this coding scheme [5] is
summarized as follows. The proof can be found in [2].

Proposition 1: A rate tuple R is achievable for the index
coding problem (i|Ai), i ∈ [n], under a given decoding
configuration D if∑

j∈L
Rj <

∑
K⊆Di∪Ai,
K∩L6=∅

SK , ∀L ⊆ Di, i ∈ [n], (4)

∑
K⊆[n],K*Ai

SK < 1, ∀i ∈ [n], (5)

for some SK ≥ 0, K ⊆ [n].
Here the inequalities in (4) signify the second-step decod-

ing constraints for the messages in Di. The inequalities in (5)
signify the first-step decoding constraints for the composite
indices to be recovered from the server output, except those
that can be generated from receiver side information.

B. Variable Decoding Configuration

In this part, we allow the decoding configuration to vary
and compute the achievable rate region across all such con-
figurations. Let Di = {Di ⊆ [n] \ Ai : i ∈ Di} be the
set of all possible decoding message sets at receiver i. Any
decoding configuration D = (Di, i ∈ [n]) ∈ D =

∏n
i=1Di.

For each decoding configuration D, define message rates
Ri(D), i ∈ [n], fractional server capacity C(D) ≤ C = 1,
and composite index rates SK(D), K ⊆ [n] as a function
of D. Using the composite coding scheme presented in
Section III-A, and combining the corresponding rate tuples
for each D, the following was established in [6].

Proposition 2: A rate-capacity tuple R is achievable for
the index coding problem (i|Ai), i ∈ [n], if

Ri =
∑
D

Ri(D), ∀i ∈ [n], (6)

1 =
∑
D

C(D), (7)

for some Ri(D), SK(D), and C(D) such that for every D∑
j∈L

Rj(D) <
∑

K⊆Di∪Ai,
K∩L6=∅

SK(D),∀L ⊆ Di, i ∈ [n], (8)

∑
K⊆[n],K*Ai

SK(D) < C(D), ∀i ∈ [n]. (9)

For any D and corresponding C(D) ≤ 1, we use R(D) to
denote the rate region achievable through (8) and (9). Note
that if C(D) = 1, R(D) simply denotes the rate region given
by Proposition 1 (achievable through (4) and (5)).

C. Computation Complexity Issues

To motivate the problem, consider the achievable rate
region for a given decoding configuration D in Proposition 1,
which has to be computed by eliminating the intermediate
variables SK , K ⊆ [n], from (4) and (5). However, the
complexity of FME is between linear and doubly-exponential
in the number of variables to eliminate [9]. Since the number
of SK variables is 2n − 1 and is already exponential in n,
without any simplification, the FME computational complex-
ity for problems with large n is prohibitive. If only the optimal
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broadcast rate β or the sum capacity rather than the whole
capacity region C is of interest, LP can be used, which
typically has a much lower computational complexity than
FME. However, it is still not clear how to choose the decoding
configuration.

If a “lucky” D yields achievable rates that match necessary
conditions given by the MAIS or polymatroidal bound, the
capacity (region) is established. If there is a gap, a tighter
result may be obtained by recomputing Proposition 1 through
varying D or by computing Proposition 2 using a collection
of D.1 For a given index coding problem, starting from
Di = {i} and taking into account the side information Ai, the
number of decoding configurations to consider grows super-
exponentially in n as

|D| =
∣∣∣∣ n∏
i=1

Di

∣∣∣∣ = 2n
2−

∑n
i=1 |Ai|−n.

It is therefore imperative to reduce the number of SK vari-
ables and the search range over D as much as possible.

IV. SIMPLIFIED COMPOSITE CODING

Our first contribution is to show in Subsection IV-A how
composite coding scheme can be simplified for a fixed
decoding configuration. Our second contribution is to show
in Subsection IV-B how one can ignore some decoding
configurations without affecting the achievable rate region.

A. Reducing Composite Indices

In this subsection, our goal is to determine whether it is
possible to remove SK for some K ⊆ [n] in Proposition 1
without affecting its performance. Our proposed simplifica-
tion involves pairwise comparison of any two composite index
rates, say SK and SK′ , K,K ′ ⊆ [n]. Roughly speaking, if
SK appears in less second-step inequalities (4) and in more
first-step inequalities (5) relative to SK′ , then it can be safely
removed from computations.

More formally, fix an ordering for all inequalities identified
in Proposition 1. Enumerate all inequalities in (4) by indices
`2 ∈ [m2] and all inequalities in (5) by indices `1 ∈ [m1].
Note that including possibly inactive inequalities, there is
one first-step inequality and 2|Di|−1 second-step inequalities
due to each receiver. Now, assume SK respectively appears
in first-step and second-step inequalities that are identified
by indices Q1(K) ⊆ [m1] and Q2(K) ⊆ [m2] and SK′

respectively appears in first-step and second-step inequalities
identified by Q1(K

′) ⊆ [m1] and Q2(K
′) ⊆ [m2].

Theorem 1: If Q2(K) ⊆ Q2(K
′) and Q1(K

′) ⊆ Q1(K),
then SK can be removed from the inequalities identified by
Proposition 1 without affecting the resulting rate region.

Proof: Assume that SK = a and SK′ = b in the full
set of expressions in Proposition 1. Since Q2(K) ⊆ Q2(K

′),
whenever SK appears in any second-step inequality, so does
SK′ . Therefore, transferring the rate of SK to SK′ , that is
setting SK = 0 and SK′ = a + b, cannot decrease message

1If a discrepancy exists after exhausting composite coding, one should
examine other coding schemes or look for tighter necessary conditions (e.g.,
non-Shannon-type inequalities [10]), which is beyond the scope of our paper.

rates. Since Q1(K
′) ⊆ Q1(K), whenever SK′ appears in any

first-step inequality, so does SK . Hence, transferring the rate
of SK to SK′ cannot result in an invalid composite index rate
assignment in (5) and one can remove SK from expressions
in Proposition 1 without affecting performance.

Note that for any given problem, simplification via Theo-
rem 1 requires no more than (2n−1)2 pairwise comparisons.

Example 1: Consider the index coding problem
(1|4), (2|3, 4), (3|1, 2), and (4|2, 3). Set D as Dj = [n]\Aj ,
j = 2, 3, 4, and D1 = {1}. We compare the relative presence
of S{1,3} and S{1,2,3} in the decoding inequalities. Since
for any i ∈ [n], {1, 3} 6⊆ Ai and {1, 2, 3} 6⊆ Ai, S{1,3}
and S{1,2,3} are present in all first-step inequalities. Writing
second-step decoding inequalities of Proposition 1 yields

R1 < S{1} + S{1,4},

R1 < S{1} + S{1,2} + S{1,3} + S{1,2,3} + · · ·+ S[n],

R2

(a)
< S{2} + S{1,2} + S{2,3} + S{1,2,3} + · · ·+ S[n],

· · · · · ·
R1 +R4 < S{1} + S{1,2} + · · ·+ S{4} + · · ·+ S[n].

Now we observe that S{1,2,3} is present in one more
second-step decoding inequality compared with S{1,3}
(in the inequality (a) above, S{1,2,3} is present, but
S{1,3} is not). Hence, S{1,3} can be removed without
affecting the achievable rate performance. Continuing
this procedure for all distinct K,K ′ ⊆ [n], the
only remaining composite index rates are SK , K ∈
{{1}, {2}, {1, 2}, {3}, {2, 3}, {4}, {1, 4}, {3, 4}, {1, 2, 3, 4}},
reducing the number of rate variables from 15 to 9.2

1) Heuristic Reduction: We present a heuristic algorithm
that can result in further reductions in the number of com-
posite index rates, albeit with possible performance loss. It is
based upon Theorem 1 and allows reduction even when some
of the conditions are violated in a controlled manner.

Specifically, we still require that Q2(K) ⊆ Q2(K
′), which

will ensure that the corresponding composite index wK′ is
at least as useful as wK in the second-step decoding for all
receivers. Now, note that Q1(K

′) ⊆ Q1(K) in Theorem 1
implies that there does not exist any receiver for which SK′

appears in their first-step decoding inequalities while SK does
not. We define the subset of receivers who know all messages
in xK , but not all messages in xK′ as follows,

M(K,K ′) = {j ∈ [n] : K ⊆ Aj ,K
′ * Aj}. (10)

The condition Q1(K
′) ⊆ Q1(K) of Theorem 1 implies

M(K,K ′) is empty. In the heuristic, we allow SK to be
removed in comparison to SK′ even when M(K,K ′) 6= ∅,
provided that wK′ is useful in the second-step decoding for
all receivers in M(K,K ′). Intuitively, although wK′ has to be
decoded in the first-step decoding at those receivers, it is not
an interference and is useful in their second-step decoding.

Simplification via Algorithm 1 can be implemented in such
a way that no more than (2n−1)2 pairwise comparisons (same

2Further reductions may be possible if we first remove inactive inequalities
and then apply Theorem 1, but we will not pursue this further in this paper.
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as Theorem 1) are required for any n-message index coding
problem. The algorithm is shown below.

Algorithm 1: Heuristic composite index rate reduction
Input : Two composite coding rates SK and SK′ that

appear respectively in (5) and (4) indexed by
Q1(K), Q2(K) and by Q1(K

′), Q2(K
′).

Receiver subset M(K,K ′) in (10).
Output: A flag indicating whether SK can be removed

from the expressions of Proposition 1.
1 If Theorem 1 holds (i.e., Q2(K) ⊆ Q2(K

′) and
M(K,K ′) = ∅), then flag = TRUE.

2 Else if Q2(K) ⊆ Q2(K
′), M(K,K ′) 6= ∅, and

K ′ ⊆ Dj ∪Aj , ∀j ∈M(K,K ′), then flag = TRUE.
3 Else flag = FALSE.

Applying Algorithm 1 to the problem in Example 1 with
the same D, all composite index rates, but S{1,4} and
S{1,2,3,4} can be eliminated. The achievable rate region of
Proposition 1 using only S{1,4} and S{1,2,3,4} coincides with
the MAIS bound, which establishes the capacity region and
confirms sufficiency of Algorithm 1 for this problem.

Note that Theorem 1 and Algorithm 1 can be used to
remove composite index rates SK(D) for any D from the
expressions of Proposition 2 as well.

B. Reducing Decoding Configurations

The main idea behind removing some decoding configu-
rations is as follows. Given an index coding problem (i|Ai),
i ∈ [n], if Ai ⊆ Aj ∪ Dj for some j 6= i, then receiver
j already knows or will know more than receiver i does.
Therefore, one can update Dj ← Dj ∪ {i} at no cost to the
achievable rate region. This is the basis for iteratively building
a decoding configuration in Algorithm 2, which we will refer
to as the natural decoding configuration and denote it by D.
Note that one can equivalently update Dj in Step 2 of the
algorithm as follows Dj ← Dj ∪Di.

Algorithm 2: Natural decoding configuration
Input : Index coding problem (i|Ai), i ∈ [n].
Output: Natural decoding configuration

D = (Di, i ∈ [n]).
1 Initialize Di = {i}, i ∈ [n].
2 For as long as there exists i, j ∈ [n] such that
Ai ⊆ Aj ∪Dj , update Dj ← Dj ∪ {i}. If no such i, j
exist, terminate the algorithm.

Theorem 2: Let D = (Di, i ∈ [n]) be a decoding configu-
ration such that Dk \Dk 6= ∅ for some k ∈ [n]. Then there
exists another decoding configuration D′ = (D′i, i ∈ [n]),
for which Di ⊆ D′i for all i ∈ [n], such that for any
C(D) = C(D′) ≤ 1, R(D) ⊆ R(D′).

Theorem 2 can be proved by applying the following lemma
at most n times.

Lemma 1: Let D = (Di, i ∈ [n]) be a decoding configu-
ration such that Dk \Dk 6= ∅ for some k ∈ [n]. Then there

exists some D′ = (D′i, i ∈ [n]) satisfying

Di ⊆ D′i, i = k, (11)
D′i = Di, i 6= k, (12)

such that for any C(D) = C(D′) ≤ 1, R(D) ⊆ R(D′).
Proof: Let Dk \ Dk = {k1, · · · , km}. Assume that

k1, · · · , km are added to Dk using Algorithm 2 in order.
Therefore, for ` ∈ [m] we have

Ak`
⊆ Ak ∪Dk ∪ {k1, · · · , k`−1} (13)
⊆ Ak ∪Dk ∪Dk1

∪ · · · ∪Dk`−1
. (14)

Define D′ = (D′i, i ∈ [n]) by

D′i =

{
Di, i 6= k,

Dk ∪Dk1 ∪ · · · ∪Dkm , i = k.
(15)

Since k` ∈ Dk`
, ` ∈ [m], we have Dk ⊆ D′k = Dk ∪Dk1

∪
· · · ∪Dkm . So it remains to prove that R(D) ⊆ R(D′).

For any achievable rate tuple R(D) ∈ R(D), there exists
some (SK(D),K ⊆ [n]) such that they satisfy (8) and (9)
with D and C(D). Now we are going to show that R(D) ∈
R(D′) by showing that R(D) and (SK(D),K ⊆ [n]) also
satisfy (8) and (9) with D′ and C(D′).

As C(D) = C(D′), the inequalities in (9) do not depend
on whether D or D′ is used. Also, for i 6= k, D′i = Di and
the corresponding inequalities in (8) are the same. Therefore,
it suffices to show that R(D) and (SK(D),K ⊆ [n]) satisfy∑

j∈L′
Rj(D) <

∑
K⊆D′k∪Ak,

K∩L′ 6=∅

SK(D), ∀L′ ⊆ D′k. (16)

Consider partitioning L′ as L′ = L ∪ L1 ∪ · · · ∪ Lm, where

L ⊆ Dk,

L` ⊆ Dk`
\ ((

⋃
1≤j≤`−1

Dkj ) ∪Dk), ∀` ∈ [m].

Sets L,L1, · · · , Lm are disjoint and the LHS of (16) is∑
j∈L′

Rj(D) =
∑
j∈L

Rj(D) +
∑
`∈[m]

∑
j∈L`

Rj(D). (17)

For any ` ∈ [m], as L` ⊆ Dk`
, according to (8), we can write∑

j∈L`

Rj(D) <
∑

K⊆Ak`
∪Dk`

,

K∩L` 6=∅

SK(D)

<
∑

K⊆Ak∪Dk∪Dk1
∪···∪Dk`−1

∪Dk`
,

K∩L` 6=∅

SK(D)

=
∑

K⊆Ak∪Dk∪Dk1
∪···∪Dk`−1

∪Dk`
,

K*Ak∪Dk∪Dk1
∪···∪Dk`−1

,

K∩L` 6=∅

SK(D), (18)

where the second inequality follows from (13). Again, ac-
cording to (8), we have∑

j∈L
Rj(D) <

∑
K⊆Dk∪Ak,

K∩L6=∅

SK(D). (19)
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Summing up (19) and (18) for ` ∈ [m] yields the desired
result in (16).

Example 2: Consider the same problem as in Example 1.
We start with Di = {i}, i ∈ [n]. Since A1 ⊂ A2, receiver 2
can also decode message 1 at no cost. Hence, D2 = {1, 2}.
Similarly, since A4 ⊂ A3∪D3, D3 = {3, 4}, and since A1 ⊂
A4∪D4, D4 = {1, 4}. Algorithm 2 stops here. This decoding
configuration coincides with the one in Example 1 and is
sufficient to achieve the capacity region for this problem.

V. NUMERICAL RESULTS

To show the efficacy of our proposed simplifications, we
first consider all 218 and 9,608 non-isomorphic problems
with n = 4 and 5, respectively. For each problem, we only
use the natural decoding configuration D obtained through
Algorithm 2. Hence for each problem, the reduction in the
number of decoding configurations is (100 − 100

|D| )%, where
|D| was given in Section III-C. We then apply Algorithm 1 to
all possible rate pairs SK and SK′ in Proposition 1. If for a
given problem, Algorithm 1 only retains m out of 2n−1 such
rates, the reduction rate for that problem is (100− 100m

2n−1 )%.
Finally, we use FME [11] to eliminate the only m remaining
SK′ variables and compute the rate region of Proposition 1.
All tests in this section were run on an Apple iMac 4GHz Intel
Core i7 with 16 GB memory and using Matlab R© R2017b.

According to the test results, the natural decoding configu-
ration D together with Algorithm 1 are sufficient to establish
the capacity region for all problems with n = 4 and 5. Table
I indicates the average computational savings. Although not
strictly needed, the average reduction using the more conser-
vative Theorem 1 is shown for comparison. As shown in the
last column, it takes on average 5.6 and 11.63 times longer
to eliminate all (2n − 1) SK variables in the non-reduced
problems with n = 4 and 5, respectively, as compared
to eliminating only the few rates retained by Algorithm 1.
Finally, the distribution of composite rate reduction among
problems is quite good. For n = 4, only in 7 problems a
maximum of m = 3 rates were retained, where for all other
problems, m ≤ 2. For n = 5, in only 31 of 9,608 problems,
m = 7 to at most m = 10 composite rates were used.

In Table II, we show results for some problems with
n = 6. We have chosen the set of 10,634 potential canonical
problems as described in [2]. We only compute the achievable
symmetric rate of the composite coding. For a vast majority
of problems, D together with Algorithm 1 were sufficient
to obtain β. In 114 problems, Theorem 1 was required. In
460 problems, the natural decoding configuration was not
sufficient to achieve β. Instead, we grouped all supersets of
D into batches of D of size 256, labelled as B1 to Be and
were able to achieve β using Algorithm 1 and Proposition 2
using a certain batch Bb. If b batches are tested for a
problem until finding β, the decoding configuration reduction
is (100− 100×256b

|D| )%. Finally, for 110 problems we were not
able to achieve β using composite coding with any of the
methods described above.

The efficacy of the reduction techniques is not lim-
ited to n ≤ 6 or small number of decoding configura-

tions. As an illustration, for the problem (1|2, 3, 4, 5, 7),
(2|1, 3, 5, 6, 7), (3|1, 2, 4, 6, 7), (4|1, 2, 5, 7), (5|2, 3, 6, 7),
(6|1, 3, 4, 7), (7|−), applying Algorithm 1 to Proposition 2
to compute the achievable symmetric rate using all 4, 096
supersets of D takes 128 seconds to obtain RSym = 1/3.25.
The total number of variables in the LP (including all Ri(D)
variables) is around 58, 000. In comparison, if Proposition 2
without any composite rate reduction is used across all 4, 096
decoding configurations, the program takes about 31 minutes
(15 times slower) to compute the same symmetric rate. The
total number of variables in the LP is around 553, 000. Both
methods used sparse matrix representation in Matlab R©.

Table I
RESULTS FOR ALL PROBLEMS WITH n = 4 AND 5.

Problem
Size

Ave. dec.
config.

reduction

Ave. SK

reduction
by Alg. 1

Ave. SK

reduction
by Thm. 1

Not-reduced time
Alg. 1 time

n = 4 96.13% 89.6% 63.06% 560%

n = 5 99.64% 92.36% 71.42% 1163%

Table II
RESULTS FOR 10,634 CANONICAL PROBLEMS WITH n = 6.

Number of
Problems

Ave. dec.
config.

reduction

Ave. SK

reduction
by Alg. 1

Ave. SK

reduction
by Thm. 1

How β was
obtained

9,950 99.97% 90.90% 71.93% D & Alg.1

114 99.99% - 73.88%
D &

Thm. 1

460 96.70% 84.99% 68.21%
Batches of
D & Alg.1

110 - - - Unable to
achieve β

REFERENCES

[1] Y. Birk and T. Kol, “Informed-source coding-on-demand (ISCOD) over
broadcast channels,” in IEEE INFOCOM, Mar. 1998, pp. 1257–1264.

[2] F. Arbabjolfaei and Y.-H. Kim, Fundamentals of Index Coding. To
appear in Foundations and Trends in Communications and Information
Theory, 2018.

[3] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Lexicographic products
and the power of non-linear network coding,” in Proc. Symp. on
Foundations of Computer Science (FOCS), 2011, pp. 609–618.

[4] H. Maleki, V. R. Cadambe, and S. A. Jafar, “Index coding: An
interference alignment perspective,” IEEE Trans. Inf. Theory, vol. 60,
no. 9, pp. 5402–5432, 2014.

[5] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Sasoglu, and L. Wang,
“On the capacity region for index coding,” in Proc. IEEE Int. Symp.
on Information Theory (ISIT), 2013, pp. 962–966.

[6] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y.-H. Kim, “On the capacity
for distributed index coding,” in Proc. IEEE Int. Symp. on Information
Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 3055–3059.

[7] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge:
Cambridge University Press, 2011.

[8] Z. Bar-Yossef, Y. Birk, T. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, pp. 1479–1494, 2011.

[9] D. Monniaux, “Quantifier elimination by lazy model enumeration,” in
International Conference on Computer Aided Verification. Springer,
2010, pp. 585–599.

[10] H. Sun and S. A. Jafar, “Index coding capacity: How far can one
go with only shannon inequalities?” IEEE Trans. Inf. Theory, vol. 61,
no. 6, pp. 3041–3055, 2015.

[11] I. B. Gattegno. FME-IT package for MATLAB. [Online]. Available:
http://www.ee.bgu.ac.il/∼fmeit/download.html

2018 IEEE International Symposium on Information Theory (ISIT)

460


