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Abstract—A new coding scheme for broadcasting multi-
ple messages over a general relay network is presented.
The proposed distributed decode–forward scheme com-
bines Marton coding for single-hop broadcast channels and
partial decode–forward for relay channels by Cover and El
Gamal. For the N -node Gaussian broadcast relay network,
the scheme achieves within 0.5N bits from the capacity
region, extending and refining a recent result by Kannan,
Raja, and Viswanath. The main idea of the scheme is to
precode all the codewords initially at the source and to
decode and forward parts of them on the fly at the relays.

I. INTRODUCTION

Motivated by ever-increasing demands for higher data

rates and broader coverage, future cellular systems are

expected to deploy many small base stations. While such

dense deployment provides the benefit of bringing the

radio closer to end users, it also increases the amount

of interference from neighboring cells. Consequently,

several system architectures have been proposed [1], [2]

to mitigate multicell interference, whereby multiple base

stations are connected via optical or wireless links to

a central processor that encodes and decodes messages

over multiple cells jointly; see Figure 1 for a typical

deployment scenario of a coordinated cellular network.

One of the main challenges in designing coordinated

cellular networks is to develop optimal transmission

schemes for networked multiplexing, namely, simulta-

neous transmission of multiple messages for both mul-

tihop uplink and downlink communications, which are

multihop extensions of the traditional multiple access

and broadcast channels in a single cell. What is the

fundamental limit on the performance of uplink (multiple

access) and downlink (broadcast) relay networks? Which

coding scheme achieves this limit?

For multiple access relay networks, this problem is

relatively well studied as a special instance of gen-

eral multimessage multicast. In their award-winning

paper [3], Avestimehr, Diggavi, and Tse developed

the quantize–map–forward coding scheme that uni-

formly achieves the capacity for single-message multi-

cast Gaussian networks within a constant gap. This

coding scheme was further streamlined and extended by

noisy network coding [4], [5], [6], the main features of
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Fig. 1. A typical dense heterogeneous network with centralized
multicell joint processing. The central processor encodes and decodes
messages over multiple cells jointly for multihop transmission and
reception, respectively.

which include a single-letter performance bound that can

be applied to arbitrary multimessage multicast network

models. In particular, noisy network coding achieves the

capacity region for N -node Gaussian multiple access

networks within 0.63N bits per dimension.

For broadcast relay networks, however, much less

is known. The main difficulty for broadcast lies with

the need for careful coordination among codewords for

multiple messages. This is evident even with single-hop

broadcast channels, for which the capacity region is not

known in general. Recently, Kannan, Raja, and Viswa-

nath [7] made a seminal contribution to the problem by

showing that the capacity region for Gaussian broadcast

relay networks can be achieved within a uniform con-

stant number of bits from the cutset outer bound. The

main idea behind their coding scheme is the “pruning”

technique for coordinating superletter codewords, which

was originally introduced by Anand and Kumar [8] for

multicast.

This paper presents a single-letter coding scheme that

extends the multiletter coding scheme by Kannan et

al. [7] to arbitrary noisy networks, with the ultimate

goal of establishing general design principles for broad-

cast relay networks. The development of an efficient

and scalable coding scheme entails the following two

considerations. First, among the three canonical relaying

schemes, decode–forward [9], compress–forward [9],

and amplify–forward [10], since the relay processing

of compress–forward and amplify–forward inherit ran-

dom noise components, coordination for broadcasting

multiple codewords is not possible as the exact status
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of the relays is not available at the source. This leaves

(some version of) decode–forward as the only building

block that is feasible for coordination. Second, since

the network model simplifies to the classical broadcast

channel when the network is single-hop, the coding

scheme must include Marton coding [11] for broadcast

channels.

Guided by these two criteria, our coding scheme care-

fully combines Marton’s multicoding scheme [12, Sec-

tion 8.3.2] with a variant of partial decode–forward [13].

In particular, by jointly encoding all the messages with

compatible codewords via multicoding, the source node

coordinates and controls the transmission over the entire

network, and the relays simply recover their desired

messages as well as parts of other messages in a block-

by-block manner. The details will be explained in Sec-

tion III.

When applied to deterministic networks, the achiev-

able rate region of this distributed decode–forward cod-

ing scheme simplifies to the same rate expression as the

cutset outer bound [7, Eq. (9)] except for a difference

in the form of input pmfs. For Gaussian networks,

we show that our scheme achieves the capacity region

within 0.5N bits per dimension, which provides the best

known gap result in general. For the standard single-hop

broadcast channel, the achievable rate region coincides

with Marton’s inner bound. In this sense, the proposed

coding scheme is an extension of Marton coding to

multihop networks.

Throughout the paper, we use the notation in [12].

In particular, a sequence of random variables with node

index k and time index i ∈ [1 : n] := {1, . . . , n} is

denoted as Xn
k := (Xk1, . . . , Xkn). A tuple of random

variables is denoted as X(A) := (Xk : k ∈ A).

II. PROBLEM SETUP AND MAIN RESULTS

Consider the N -node discrete memoryless broadcast

relay network (BRN) p(y1, . . . , yN |x1, . . . , xN ). The

noise, interference, and broadcast effects in the net-

work as well as the topology of the network (which

nodes can communicate directly to which other nodes)

are defined through the structure of the conditional

pmf p(yN |xN ), namely, the probability that the output

symbols y1, . . . , yN are received at nodes 1, . . . , N ,

respectively, when the input symbols x1, . . . , xN are

transmitted from nodes 1, . . . , N , respectively.

Suppose that source node 1 wishes to communicate

messages M2, . . . ,MN to their respective destination

nodes 2, . . . , N . The ((2nR2 , . . . , 2nRN ), n) code for the

BRN consists of

• message sets [1 : 2nR2 ], . . . , [1 : 2nRN ],
• a source encoder that assigns a symbol

x1i(m2, . . . ,mN , yi−1
1 ) to each message tuple

(m2, . . . ,mN ) ∈ [1 : 2nR2 ] × · · · × [1 : 2nRN ] and

received sequence yi−1
1 ∈ Yi−1

1 for i ∈ [1 : n],
• a set of relay encoders, where encoder k ∈ [2 :N ]

assigns xki(y
i−1
k ) to each yi−1

k for i ∈ [1 : n], and

• a set of decoders, where decoder k ∈ [2 :N ] assigns

an estimate m̂k or an error message e to each ynk .

The performance of the code is measured by the average

probability of error P
(n)
e = P{M̂k 6= Mk for some k ∈

[2 :N ]}, where (M2, . . . ,MN) be uniformly distributed

over [1 : 2nR2 ] × · · · × [1 : 2nRN ]. A rate tuple

(R2, . . . , RN ) is said to be achievable if there exists

a sequence of ((2nR2 , . . . , 2nRN ), n) codes such that

limn→∞ P
(n)
e = 0. The capacity region of the BRN

is the closure of the set of achievable rate tuples

(R2, . . . , RN ).
We are ready to state the main result of the paper.

Theorem 1. For the discrete memoryless broadcast

relay network p(yN |xN ), a rate tuple (R2, . . . , RN ) is

achievable if

R(Sc) < I(X(S);U(Sc)|X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk) (1)

for all S ⊆ [1 :N ] such that 1 ∈ S and Sc 6= ∅ for some

(
∏n

k=2 p(xk))p(x1, u
N
2 |xN

2 ), where Sc
k = Sc∩ [2 : k−1]

and R(Sc) =
∑

k∈Sc Rk.

The proof of Theorem 1 along with the description and

analysis of the associated distributed decode–forward

coding scheme is deferred to Section III. By setting some

rates to zero (say, Rk = 0 if k /∈ D) in Theorem 1 and

removing inactive inequalities, we can also establish the

following inner bound on the capacity region when the

message tuple (Mk : k ∈ D) is broadcast to a set of

destination nodes, D ⊆ [2 :N ].

Theorem 2. For the discrete memoryless broadcast relay

network p(yN |xN ) with destination set D ⊆ [2 : N ], a

rate tuple (Rk : k ∈ D) is achievable if

R(T ) < min
S:T ⊆Sc

I(X(S);U(Sc)|X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk) (2)

for all T ⊆ D for some (
∏n

k=2 p(xk))p(x1, u
N
2 |xN

2 ),
where Sc

k = Sc ∩ [2 : k − 1] and R(T ) =
∑

k∈T Rk.

The capacity inner bound in Theorem 2 has a similar

structure to the cutset bound [14, Theorem 15.10.1],

R(T ) ≤ min
S:T ⊆Sc

I(X(S);Y (Sc)|X(Sc)) (3)

for all T ⊆ D for some p(xN ). The first term of (2),

however, has the auxiliary random variables Uj instead

of Yj , and there is a negative term that quantifies the
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cost of multicoding. In addition, the pmfs for (2) are of

the form (
∏n

k=2 p(xk))p(x1, u
N
2 |xN

2 ) rather than the full

joint form.

We illustrate the utility of Theorem 1 via three canon-

ical examples.

Example 1 (Deterministic networks). Suppose Yk =
gk(X1, . . . , XN ), k ∈ [1 :N ]. Then, by setting Uk = Yk,

k ∈ [2 :N ] in (2), Theorem 2 simplifies as:

R(T ) < min
S:T ⊆Sc

H(Y (Sc)|X(Sc)), T ⊆ D, (4)

for some pmf (
∏N

k=2 p(xk))p(x1|xN
2 ). This region re-

fines the results by Kannan, Raja, and Viswanath [7,

Theorem 2] for deterministic broadcast networks by

considering a slightly more general form of input pmfs.

If the cutset bound in (3) is attained by pmfs of the same

form, then the lower bound in (4) is tight. In particular,

for the graphical network, whereby each link is noise-

free and orthogonal, Theorem 2 recovers the result by

Federgruen and Groenevelt [15]:

R(T ) < min
S:T ⊆Sc

C(S),

where C(S) denotes the capacity of the cut (S,Sc).

Example 2 (Gaussian networks). Consider the additive

white Gaussian noise network, in which the channel

outputs are Yk = gk1X1+· · ·+gkNXN+Zk, k ∈ [1 :N ].
Here gkj is the channel gain from node j to node k and

Z1, . . . , ZN are independent Gaussian noise components

with zero mean and unit variance. We assume average

power constraint P on each Xk [12, Section 19.1]. On

the one hand, by similar steps as in [13], the cutset bound

in (3) can be relaxed to the set of rate tuples that satisfy,

R(Sc) ≤
1

2
log

∣

∣I + PG(S)GT(S)
∣

∣+
|S|

2
.

On the other hand, in the inner bound (2) we set Xk, k ∈
[1 :N ], i.i.d. N(0, P ), and Uk = gk1X1+· · ·+gkNXN+
Ẑk, k ∈ [2 : N ], where Ẑk ∼ N(0, 1) are independent

of each other and of (XN , Y N ). Again, similar to the

steps in [13], Theorem 1 simplifies as

R(Sc) <
1

2
log

∣

∣I + PG(S)GT(S)
∣

∣−
|Sc|

2
.

Comparing the inner and outer bounds, we can conclude

that distributed decode–forward achieves within 0.5N
bits per dimension from the cutset bound and thus from

the capacity region. This improves upon the existing

gap result of O(N log(N)) by Kannan et al. [7, Theo-

rem 1], establishing the tightest known gap for Gaussian

broadcast relay networks. A similar gap result can be

established for Gaussian vector (MIMO) networks. In

this case, distributed decode–forward achieves within

0.5T bits per dimension from the cutset bound, where

T is the total number of antennas in the network.

Example 3 (Broadcast channels). Consider the

single-hop discrete memoryless broadcast channel

p(y2, . . . , yN |x1), which corresponds to setting

Y1 = X2 = · · · = XN = ∅ in our broadcast relay

network model. For this case, Theorem 1 simplifies

to Marton’s inner bound [11], namely, a rate tuple

(R2, . . . , RN ) is achievable if

R(Sc) <
∑

k∈Sc

I(Uk;Yk)−
∑

k∈Sc

I(Uk;U(Sc
k)), (5)

for all S ⊆ [1 : N ] such that 1 ∈ S and Sc 6= ∅ for

some pmfs p(uN
2 ) and functions x1(u

N
2 ). Equation (5)

follows from

I(X1;U(Sc))−
∑

k∈Sc

I(Uk;U(Sc
k), X1 |Yk)

=
∑

k∈Sc

I(Uk;X1 |U(Sc
k))−

∑

k∈Sc

I(Uk;U(Sc
k), X1 |Yk)

(a)
=

∑

k∈Sc

I(Uk;Yk) +
∑

k∈Sc

I(Uk;X1 |U(Sc
k))

−
∑

k∈Sc

I(Uk;U(Sc
k), X1)

=
∑

k∈Sc

I(Uk;Yk)−
∑

k∈Sc

I(Uk;U(Sc
k))

where equality (a) is due to the Markovity Y N → X1 →
UN . This result verifies that the distributed decode–

forward coding scheme that achieves the inner bound in

Theorem 1 is a natural generalization of the single-hop

Marton coding scheme to multihop relaying.

III. PROOF OF THEOREM 1

We use a block Markov coding scheme in which

a sequence of b i.i.d. message tuples Mj =
(M2j , . . . ,MNj), j ∈ [1 : b], is sent over b blocks each

consisting of n transmissions. For each block, we gener-

ate codewords Uk, k ∈ [2 :N ], to be recovered at node k.

Using multicoding [12, Sections 7.8 and 8.3], we design

these codewords to be dependent among themselves

and on the transmitted codewords X1, . . . , XN . The

key difference from multicoding for single-hop networks

is that here multicoding is performed using backward

encoding over all blocks and the dependency among

the codewords are satisfied simultaneously among them.

Node k recovers its intended message explicitly as well

as some part of other messages implicitly by recovering

Uk. The recovered part of the unintended messages,

captured by an auxiliary index, is then forwarded to the

destination nodes in the next block. The encoding and

decoding operations are summarized in Table I. We now

describe the full detail of the coding scheme.

Codebook generation. Fix
∏N

k=2 p(xk)p(x1, u
N |xN

2 ).
For each block j ∈ [1 : b], randomly and indepen-

dently generate 2nR̂k sequences xn
kj(lk,j−1), lk,j−1 ∈
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Block 1 2 · · · b− 1 b

Multicoding l0 ← l1 . . . ← lb−2 ← lb−1

X1 xn
1 (m1, l1|l0) xn

1 (m2, l2|l1) . . . xn
1 (mb−1, lb−1|lb−2) xn

1 (mb, lb|lb−1)

Xk xn
k (lk0) xn

k (lk1) . . . xn
k (lk,b−2) xn

k (lk,b−1)

Yk (m̂k1, l1)→ (m̂k2, lk2)→ . . . (m̂k,b−1, lk,b−1)→ (m̂kb, lkb)→

TABLE I
ENCODING AND DECODING OF THE DISTRIBUTED DECODE–FORWARD CODING SCHEME.

[1 : 2nR̂k ], each according to
∏n

i=1 pXk
(xki), k ∈

[2 : N ]. For each lk,j−1, randomly and independently

generate 2n(Rk+R̂k) sequences un
k (mkj , lkj |lk,j−1),

(mkj , lkj) ∈ [1 : 2nRk ] × [1 : 2nR̂k ], each accord-

ing to
∏n

i=1 pUk|Xk
(uki|xki(lk,j−1)). For each mj =

(m2j , . . . ,mNj), lj = (l2j , . . . , lNj), and lj−1 =
(l2,j−1, . . . , lN,j−1), randomly and independently gen-

erate sequences xn
1 (mj, lj |lj−1), each according to

n
∏

i=1

pX1|UN

2
,XN

2

(x1i |u2i(l2j |l2,j−1), . . . ,

uNi(lNj |lN,j−1), x2i(l2j), . . . ,

xNi(lNj)).

Encoding. For j = b, b − 1, . . . , 1, given mj , find an

index tuple lj−1 such that

(un
2 (m2j , l2j |l2,j−1), . . . , u

n
Nj(mNj , lNj |lN,j−1),

xn
2j(l2,j−1), . . . , x

n
Nj(lN,j−1)) ∈ T

(n)
ǫ′ ,

successively with the initial condition l2b = · · · =
lNb = 1. If there is more than one such index tuple,

select one of them arbitrarily. If there is none, select

one arbitrarily from [1 : 2nR̂2 ] × · · · × [1 : 2nR̂N ]. By a

direct application of the properties of multivariate typi-

cality [12, Section 2.5], induction on backward encoding,

and steps similar to those of the multivariate covering

lemma [12, Lemma 8.2], it can be shown that encoding

is successfully with high probability if

R̂(T ) >
∑

k∈T

I(Uk;U(Tk), X(T )|Xk) + δ(ǫ′) (6)

for all T ⊆ [2 :N ], where Tk = T ∩ [2 : k − 1].
Before the actual transmission of the messages, we use

additional (N − 1)2 blocks to transmit each lk0 to node

k ∈ [2 :N ] using multihop coding, as in the initialization

phase for short-message noisy network coding in [6] and

distributed decode–forward for multicast in [13]. The

additional transmission needed for this phase is in the

order of O(nN2), independent of b. Thus, the realized

transmission rate converges to R as b → ∞. In the

following, we assume that all lk0 indices are known prior

to transmission.

To send message tuple mj in block j, the source node

transmits xn
1 (mj , lj|lj−1), where (lj, lj−1) is the chosen

index tuple.

Relay encoding and decoding. Let ǫ > ǫ′. At the end

of block j, node k finds a unique pair (m̃kj , l̃kj) ∈ [1 :

2nRk ]× [1 : 2nR̂k ] such that

(un
k (m̃kj , l̃kj | l̃k,j−1), x

n
kj(l̃k,j−1), y

n
kj) ∈ T (n)

ǫ

and declares m̃kj as its message estimate. (If there is

none or more than one pair, declare m̃kj = 1.) By the

packing lemma [12, Lemma 3.1], this is successful with

high probability if l̃k,j−1 was recovered correctly at the

end of the previous block and

Rk + R̂k < I(Uk;Yk |Xk)− δ(ǫ). (7)

In the next block j+1, node k transmits xn
k,j+1(l̃kj). By

identifying S = [1 :N ]\T and eliminating the auxiliary

rates R̂2, . . . , R̂N from (6) and (7), we have

R(Sc) < I(X(S);U(Sc)|X(Sc))

−
∑

k∈Sc

I(Uk;U(Sc
k), X

N |Xk, Yk)− δ′(ǫ)

for some S ⊆ [1 : N ] such that 1 ∈ S and Sc 6= ∅.

IV. DISCUSSION

As a dual setting to the broadcast relay network,

consider the multiple access relay network p(yN |xN ),
in which source nodes k ∈ [2 : N ] communicate

independent messages to the common destination node 1.

This is a special case of the multimessage multicast

network [12, Section 18.4] and the noisy network coding

inner bound [4], [5], [6] simplifies as follows.

Theorem 3. For the discrete memoryless multiple access

relay network, a rate tuple (R2, . . . , RN ) is achievable

if

R(S) < I(X(S); Ŷ (Sc), Y1 |X(Sc))

− I(Y (S); Ŷ (S)|XN , Ŷ (Sc), Y1) (8)

for all S ⊆ [1 :N ] such that 1 ∈ Sc and S 6= ∅ for some

joint pmf
∏N

k=1 p(xk)p(ŷk|yk, xk).

This inner bound has a form that is, in a sense, dual

to Theorem 1. The first term in (8) has auxiliary random

variables Ŷj , which is to be encoded at node j and to

be decoded at node 1. In comparison, the first term

in (1) has auxiliary random variables Uj , which is to

be encoded at node 1 and to be decoded at node j. In

addition, the second term in (8) quantifies the cost of
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Distributed decode–forward Noisy network coding

Network model Broadcast relay networks Multiple access relay networks

Key component Backward encoding at the source Backward decoding at the destination

Single–hop Marton inner bound MAC capacity region

Relay channel Partial decode–forward lower bound Compress–forward lower bound

Gaussian capacity gap 0.5N bits 0.63N bits

TABLE II
COMPARISON BETWEEN DISTRIBUTED DECODE–FORWARD AND NOISY NETWORK CODING.

decoding Ŷj at node 1, while the second term in (1)

quantifies the cost of encoding Uj at node 1.

As with distributed decode–forward, for deterministic

networks, the noisy network coding scheme of Theo-

rem 3 achieves

R(S) < H(Y (Sc)|X(Sc)),

which is of the same form as the cutset bound except

for the set of input pmfs. For Gaussian networks, noisy

network coding uniformly achieves within 0.63N bits

per dimension from the capacity region. Finally, for the

single-hop multiple access channel, Theorem 3 simplifies

to the multiple access channel capacity region (before

time sharing), namely,

R(S) < I(X(S);Y1 |X(Sc))

for all S for some
∏n

k=1 p(xk). Thus, both dis-

tributed decode–forward (DDF) and noisy network cod-

ing (NNC) naturally extend the standard broadcast

channel and multiple access channel coding schemes

by combining them with (partial) decode–forward and

compress–forward, respectively.

The duality between Theorems 1 and 3 is also re-

flected by the operations of the DDF and NNC schemes.

In destination-centric NNC, the source and the relays

are relatively simple, but the major burden is on the

destination so as to recover the messages and the com-

pression indices from the entire network over multiple

blocks. This scheme fits well with (and currently is

the only reasonable solution to) general multiple access

relay networks. In source-centric DDF, the relays and the

destinations are relatively simple, but the source needs to

precode dependent codewords for the entire network over

multiple blocks. The scheme fits well with (and currently

is the only reasonable solution to) general broadcast

relay networks.

This operational reciprocity in the roles of source

and destination for multiple access and broadcast has

been well noted by Kannan, Raja, and Viswanath [7],

which was the key intuition for their coding scheme that

parallels the quantize–map–forward scheme by Aves-

timehr, Diggavi, and Tse [3]. Compared to these nested

multiletter schemes [3], [7], however, NNC and DDF are

more general (designed for arbitrary wired or wireless

or hybrid networks) and provide easy-to-evaluate single-

letter performance bounds.

We finally note that just as NNC can deal with

multiple destination nodes easily (the feature of which

goes back to the original network coding scheme by

Ahlswede, Cai, Li, and Yeung [16]), DDF can be also

adapted to the groupcast scenario, in which a single-

source broadcasts multiple messages to nonoverlapping

groups of destination nodes.
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