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Abstract—The notion of directed information is intro-
duced for stochastic processes in continuous time. Proper-
ties and operational interpretations are presented for this
notion of directed information, which generalizes mutual
information between stochastic processes in a similar
manner as Massey’s original notion of directed information
generalizes Shannon’s mutual information in the discrete-
time setting. As a key application, Duncan’s theorem is
generalized to estimation problems in which the evolution
of the target signal is affected by the past channel noise,
and the causal minimum mean squared error estimation is
related to directed information from the target signal to the
observation corrupted by additive white Gaussian noise.
An analogous relationship holds for the Poisson channel.
The notion of directed information as a characterizing of
the fundamental limit on reliable communication for a
wide class of continuous-time channels with feedback is
discussed.

I. INTRODUCTION

Directed information I(Xn → Y n) between two
random n-sequences Xn = (X1, . . . , Xn) and Y n =
(Y1, . . . , Yn) is a natural generalization of Shannon’s
mutual information to random objects with causal struc-
tures. Introduced by Massey [1], this notion of directed
information has been shown to arise as the canonical
answer to a variety of problems with causally dependent
components. For example, it plays a pivotal role in char-
acterizing the capacity CFB of communication channels
with feedback. Massey [1] showed that the feedback
capacity is upper bounded by

CFB ≤ lim
n→∞

max
p(xn||yn−1)

1
n
I(Xn→Y n),

where the definition of directed information I(Xn →
Y n) is given in Section II and p(xn||yn−1) =∏n
i=1 p(xi|xi−1, yi−1) is the causal conditioning notation

streamlined by Kramer [2], [3]. This upper bound is tight
for a certain class of ergodic channels [4]–[6], paving

the road to a computable characterization of feedback
capacity; see [7], [8] for examples.

Directed information and its variants also characterize
(via multi-letter expressions) the capacity of two-way
channels and multiple access channels with feedback [2],
[9], and the rate distortion function with feedforward
[10], [11]. In another context, directed information also
captures the difference in growth rates of wealth in horse
race gambling due to causal side information [12]. This
provides a natural interpretation of I(Xn → Y n) as
the amount of information about Y n causally provided
by Xn on the fly. A similar conclusion can be drawn
for other engineering and science problems, in which
directed information measures the value of causal side
information [13].

In this paper, we extend the notion of directed in-
formation to continuous-time random processes. The
contribution of this paper is twofold. First, the definition
we give for directed information in continuous time is
valuable in itself. Just as in the discrete-time setting, di-
rected information in continuous time generalizes mutual
information between two stochastic processes. Indeed,
when two processes do not have any causal dependence
among them, the two notions become identical. Directed
information in continuous time is also a generalization
of its discrete time counterpart.

Second, we demonstrate the utility of this notion of
directed information by generalizing classical results
on the relationship between mutual information and
causal estimation in continuous time. In particular, we
generalize Duncan’s theorem which relates the minimum
mean squared error (MMSE) of a target signal based
on an observation through an additive white Gaussian
channel to directed information between the target signal
and the observation. We similarly generalize the Poisson
analogue of Duncan’s theorem.

The rest of the paper is organized as follows. Section



II is devoted to the definitions of directed information
and directed information density in continuous time,
which is followed by key properties of continuous-
time directed information in Section III. Section IV
presents a generalization of Duncan’s theorem, and of
its Poisson counterpart, for target signals that depend
on the past noise. In Section V we present a feedback
communication setting in which our notion of directed
information in continuous time emerges naturally as the
characterization of the capacity. We conclude with a
few remarks in Section VI. This extended abstract is
taken essentially verbatim from [14], with the addition
of Section V. More details, proofs of the stated results,
and additional related results will be given in [15].

II. DEFINITION OF DIRECTED INFORMATION IN

CONTINUOUS TIME

Let (Xn, Y n) be a pair of random n-sequences. Di-
rected information (from Xn to Y n) is defined as

I(Xn→Y n) :=
n∑
i=1

I(Xi;Yi|Y i−1).

Note that unlike mutual information, directed informa-
tion is asymmetric in its arguments, so I(Xn→Y n) 6=
I(Y n→Xn).

For a continuous-time process {Xt}, let Xb
a = {Xs :

a ≤ s ≤ b} denote the process in the interval [a, b]
when a ≤ b and the empty set otherwise. Let Xb−

a =
{Xs : a ≤ s < b} denote the process in the interval
[a, b) if a < b and the empty set otherwise. Similarly,
let Xb

a+ = {Xs : a < s ≤ b} denote the process in
the interval (a, b] if a < b and the empty set other-
wise. Throughout this section, equalities and inequalities
between random objects, when not explicitly indicated,
are to be understood in the sure sense (i.e., hold for all
sample paths). Functions of random objects are assumed
measurable even though not explicitly indicated.

We now develop the notion of directed information
between two continuous-time stochastic processes on the
time interval [0, T ]. Let t = (t1, t2, . . . , tn) denote an n-
dimensional vector with components satisfying

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ T. (1)

Let XT,t
0 denote the sequence of length n+ 1 resulting

from “chopping up” the continuous-time signal XT
0 into

consecutive segments as follows

XT,t
0 =

(
Xt1−

0 , Xt2−
t1 , . . . , Xtn−

tn−1
, XT

tn

)
. (2)

Note that each sequence component is a continuous-time
stochastic process. Define now

It
(
XT

0 → Y T
0

)
:= I

(
XT,t

0 → Y T,t
0

)
(3)

=

[
n∑
i=1

I
(
Y ti−
ti−1

;Xti−
0 |Y

ti−1−
0

)]
+ I

(
Y T
tn ;XT

0 |Y
tn−

0

)
,

(4)

where on the right side of (3) is the directed information
between two sequences of length n + 1 defined in
previous sections, in (4) we take t0 = 0, and the mutual
information terms between two continuous time pro-
cesses, conditioned on a third, are well defined objects,
as developed in [16], [17]. It

(
XT

0 → Y T
0

)
is monotone

in t in the following sense:

Proposition 1. If t′ is a refinement of t, then
It′
(
XT

0 → Y T
0

)
≤ It

(
XT

0 → Y T
0

)
.

The following definition is now natural:

Definition 1. Directed information between XT
0 and Y T

0

is defined as

I
(
XT

0 → Y T
0

)
:= inf

t
It
(
XT

0 → Y T
0

)
, (5)

where the infimum is over all n and t as in (1).

Note, in light of Proposition 1, that

I
(
XT

0 → Y T
0

)
= lim

ε→0+
inf

{t:ti−ti−1≤ε}
It
(
XT

0 → Y T
0

)
.

(6)
Directed information can be given an integral repre-

sentation via the following notion of a density.

Definition 2. For 0 ≤ t < T , define it+
(
XT

0 → Y T
0

)
it+
(
XT

0 → Y T
0

)
= lim

δ→0+

1
δ
I(Y t+δ

t ;Xt+δ
0 |Y t

0 ), (7)

and for 0 < t ≤ T , define it−
(
XT

0 → Y T
0

)
by

it−
(
XT

0 → Y T
0

)
= lim

δ→0+

1
δ
I(Y t

t−δ;X
t
0|Y t−δ

0 ) (8)

whenever the limits exist. When it+
(
XT

0 → Y T
0

)
and

it−
(
XT

0 → Y T
0

)
exist and are equal, we denote them

by it
(
XT

0 → Y T
0

)
, which we refer to as the directed

information density.

Proposition 2. If i0+

(
XT

0 → Y T
0

)
and

iT−
(
XT

0 → Y T
0

)
exist and are finite, and the directed

information density it
(
XT

0 → Y T
0

)
exists for all

0 < t < T , then

I
(
XT

0 → Y T
0

)
=
∫ T

0
it
(
XT

0 → Y T
0

)
dt (9)



and, for every 0 < t < T ,

d

dt
I
(
Xt

0 → Y t
0

)
= it

(
XT

0 → Y T
0

)
. (10)

Example 1. Let {Bt} be the standard Brownian motion
and let A ∼ N(0, 1) be independent of {Bt}. Let
Xt ≡ A for all t and dYt = Xtdt + dBt. Letting
J(σ2

X , σ
2
N ) = 1

2 ln σ2
X+σ2

N

σ2
N

denote the mutual information
between a Gaussian random variable of variance σ2

X and
itself corrupted by an independent Gaussian of variance
σ2
N , we have for every t ∈ [0, T )

I(Y t+δ
t ;Xt+δ

0 |Y t
0 ) = J

(
1/t

1 + 1/t
,
1
δ

)
=

1
2

ln
[
1 +

δ

t+ 1

]
and, similarly, for every t ∈ (0, T ],

I(Y t
t−δ;X

t
0|Y t−δ

0 ) = J

(
1/(t− δ)

1 + 1/(t− δ)
,
1
δ

)
=

1
2

ln
[
1 +

δ

t− δ + 1

]
.

Evidently, for all t ∈ (0, T ),

it
(
XT

0 → Y T
0

)
= i0+

(
XT

0 → Y T
0

)
= iT−

(
XT

0 → Y T
0

)
= lim

δ→0

1
2δ

ln
[
1 +

δ

t+ 1

]
= lim

δ→0

1
2δ

ln
[
1 +

δ

t− δ + 1

]
=

1
2(t+ 1)

.

We can now compute the directed information by apply-
ing Proposition 2:

I
(
XT

0 → Y T
0

)
=
∫ T

0
it
(
XT

0 → Y T
0

)
dt

=
∫ T

0

1
2(t+ 1)

dt =
1
2

ln(1 + T ). (11)

Note that in this example I
(
XT

0 ;Y T
0

)
= J(1, 1/T ) =

1
2 ln(1+T ) and thus, by (11), we have I

(
XT

0 → Y T
0

)
=

I
(
XT

0 ;Y T
0

)
. This equality between mutual and directed

information holds in more general situations, as elabo-
rated in the next section.

The directed information we have just defined is
between two processes on [0, T ]. We extend this def-
inition to processes on any other closed and bounded
interval, and to the conditional directed information
I
(
XT

0 → Y T
0

∣∣V ), where V is a random object jointly
distributed with (XT

0 , Y
T

0 ), in the obvious way.
We now define the notion of directed information

between a process on [0, T ) and a process on [0, T ]. Let
X

[δ],T
0 denote the process on [0, T ] formed by shifting

XT
0 by δ to the right and filling the gap with 0, i.e.:

X
[δ]
t = Xt−δ for t ∈ [δ, T ] and X

[δ]
t ≡ 0 for t ∈ [0, δ).

Define now

I
(
XT−

0 → Y T
0

)
:= lim sup

δ→0+
I
(
X

[δ],T
0 → Y T

0

)
(12)

and

I
(
XT−

0 → Y T
0

)
:= lim inf

δ→0+
I
(
X

[δ],T
0 → Y T

0

)
, (13)

where the directed information expressions on the right
sides of (12) and (13) are according to the definition we
already have for directed information between two pro-
cesses on [0, T ]. Finally, define the directed information
I
(
XT−

0 → Y T
0

)
by

I
(
XT−

0 → Y T
0

)
= lim

δ→0+
I
(
X

[δ],T
0 → Y T

0

)
(14)

whenever the limit exists or, equivalently, when
I
(
XT−

0 → Y T
0

)
= I

(
XT−

0 → Y T
0

)
. The fifth part

of Proposition 3 below provides, among other im-
plications, a regularity condition that suffices to en-
sure the existence of I

(
XT−

0 → Y T
0

)
. In some senses,

I
(
XT−

0 → Y T
0

)
, I
(
XT−

0 → Y T
0

)
and, when it ex-

ists, I
(
XT−

0 → Y T
0

)
are continuous-time analogues of

I(Xn−1 → Y n). One such sense is the conservation law
provided in Proposition 3.

III. PROPERTIES OF THE DIRECTED INFORMATION IN

CONTINUOUS TIME

The following proposition collects some properties of
directed information in continuous time:

Proposition 3. Directed information I
(
XT

0 → Y T
0

)
has

the following properties:
1) Monotonicity: I(Xt

0 → Y t
0 ) is monotone nonde-

creasing in t.
2) Invariance to time dilation: For α > 0, if X̃t =

Xtα and Ỹt = Ytα then I
(
X̃
T/α
0 → Ỹ

T/α
0

)
=

I(XT
0 → Y T

0 ). More generally, if φ is mono-
tone strictly increasing and continuous, and
(X̃φ(t), Ỹφ(t)) = (Xt, Yt), then

I(XT
0 → Y T

0 ) = I
(
X̃
φ(T )
φ(0) → Ỹ

φ(T )
φ(0)

)
. (15)

3) Coincidence of directed and mutual information:
If the Markov relation Y t−

0 −Xt−
0 −XT

t holds for
all 0 ≤ t ≤ T then

I
(
XT

0 → Y T
0

)
= I

(
XT

0 ;Y T
0

)
. (16)



4) Equivalence between discrete-time and piecewise
constancy in continuous-time: Let Un, V n be an
arbitrarily jointly distributed pair of n-tuples and
let t0, t1, . . . , tn be a sequence of numbers satisfy-
ing t0 = 0, tn = T , and ti−1 < ti for 1 ≤ i ≤ n.
Let the pair XT

0 , Y
T

0 be formed as the piecewise-
constant process satisfying

(Xt, Yt) = (Ui, Vi) if ti−1 ≤ t < ti (17)

and (XT , YT ) = (Un, Vn). Then

I
(
XT

0 → Y T
0

)
= I (Un → V n) .

5) Conservation law: For all 0 < δ ≤ T we have

I(Xδ−
0 ;Y δ−

0 ) + I(XT
δ → Y T

δ |Y δ−
0 ) + I(Y [δ]T

0 → XT
0 )

= I
(
XT

0 ;Y T
0

)
.

In particular,
a) lim sup

δ→0+
[I(Xδ−

0 ;Y δ−
0 ) + I(XT

δ → Y T
δ |Y δ−

0 )]

= I
(
XT

0 ;Y T
0

)
− I

(
Y T−

0 → XT
0

)
.

b) lim inf
δ→0+

[I(Xδ−
0 ;Y δ−

0 ) + I(XT
δ → Y T

δ |Y δ−
0 )]

= I
(
XT

0 ;Y T
0

)
− I

(
Y T−

0 → XT
0

)
.

c) If the continuity condition

lim
δ→0+

[I(Xδ−
0 ;Y δ−

0 ) + I(XT
δ → Y T

δ |Y δ−
0 )]

= I(XT
0 → Y T

0 )

holds, then the directed information
I
(
Y T−

0 → XT
0

)
exists and

I
(
XT

0 → Y T
0

)
+ I

(
Y T−

0 → XT
0

)
= I

(
XT

0 ;Y T
0

)
. (18)

Remarks. 1) The first, second and fourth items in
the above proposition present properties that are
known to hold for mutual information (i.e., when
all the directed information expressions in those
items are replaced by the corresponding mutual
information), and that follow immediately from the
data processing inequality and from the invariance
of mutual information to one-to-one transforma-
tions of its arguments. That these properties hold
also for directed information is not as obvious in
view of the fact that directed information is, in gen-
eral, not invariant to one-to-one transformations
nor does it satisfy a data processing inequality in
its second argument.

2) The third part of the proposition is the natural ana-
logue of the fact that I(Xn;Y n) = I(Xn → Y n)
whenever Y i − Xi − Xn

i+1 for all 1 ≤ i ≤ n. It
covers, in particular, any scenario where XT

0 and
Y T

0 are the input and output of any channel of the
form Yt = gt(Xt

0,W
T
0 ), where the process W T

0

(which can be thought of as the internal channel
noise) is independent of the channel input process
XT

0 . To see this note that in this case we (trivially)
have (Xt−

0 ,W T
0 )−Xt−

0 −XT
t for all 0 ≤ t ≤ T ,

implying Y t−
0 −X

t−
0 −XT

t since Y t−
0 is determined

by the pair (Xt−
0 ,W T

0 ).
3) Particularizing even further, we get

I
(
XT

0 → Y T
0

)
= I

(
XT

0 ;Y T
0

)
whenever Y T

0

is the result of corrupting XT
0 with additive noise,

i.e., Yt = Xt + Wt where XT
0 and W T

0 are
independent.

4) The fifth part of the proposition can be considered
the continuous-time analogue of the discrete-time
conservation law

I(Un → V n) + I(V n−1 → Un) = I(Un;V n).
(19)

It is consistent with, and in fact generalizes, the
third part. Indeed, if the Markov relation Y t−

0 −
Xt−

0 − XT
t holds for all 0 ≤ t ≤ T then our

definition of directed information is readily seen to
imply that I

(
Y

[δ]T
0 → XT

0

)
= 0 for all δ > 0 and

therefore that I
(
Y T−

0 → XT
0

)
exists and equals

zero. Thus (18) in this case collapses to (16).

IV. DIRECTED INFORMATION AND CAUSAL

ESTIMATION

A. The Gaussian Channel

In [18], Duncan discovered the following fundamental
relationship between the minimum mean squared error
in causal estimation of a target signal corrupted by an
additive white Gaussian noise in continuous time and
the mutual information between the clean and noise-
corrupted signal:

Theorem 1 (Duncan [18]). Let XT
0 be a signal of finite

average power
∫ T

0 E[X2
t ]dt < ∞, independent of the

standard Brownian motion {Bt}, and let Y T
0 satisfy

dYt = Xtdt+ dBt. Then

1
2

∫ T

0
E
[
(Xt − E[Xt|Y t

0 ])2
]
dt = I

(
XT

0 ;Y T
0

)
. (20)

A remarkable aspect of Duncan’s theorem is that the
relationship (20) holds regardless of the distribution of



XT
0 . Among its ramifications is the invariance of the

causal MMSE (minimum mean squared error) to the flow
of time, or indeed to any way of reordering time [19],
[20].

A key stipulation in Duncan’s theorem is the inde-
pendence between the noise-free signal XT

0 and the
channel noise {Bt}, which excludes scenarios in which
the evolution of Xt is affected by the channel noise,
as is often the case in signal processing (e.g., target
tracking) and in communications (e.g., in the presence
of feedback). Indeed, (20) does not hold in the absence
of such a stipulation.

As an extreme example, consider the case where the
channel input is simply the channel output with some
delay, i.e., Xt+ε = Yt for some ε > 0 (and say Xt ≡ 0
for t ∈ [0, ε)). In this case the causal MMSE on the left
side of (20) is clearly 0, while the mutual information on
its right side is infinite. On the other hand, in this case the
directed information I

(
XT

0 → Y T
0

)
= 0, as can be seen

by noting that It
(
XT

0 → Y T
0

)
= 0 for all t satisfying

maxi ti− ti−1 ≤ ε (since for such t, Xti−
0 is determined

by Y ti−1−
0 for all i).

The third comment following Proposition 3 implies
that Theorem 1 could equivalently be stated with
I
(
XT

0 ;Y T
0

)
on the right side of (20) replaced by

I
(
XT

0 → Y T
0

)
. Further, such a modified equality would

be valid in the extreme example just given. This is no
coincidence, and is a consequence of the following result
that generalizes Duncan’s theorem.

Theorem 2. Let {Bt} be a standard Brownian motion,
let {Wt} be independent of {Bt}, and let {(Xt, Yt)}
satisfy

Xt = at(Xt−δ
0 , Y t−δ

0 ,W T
0 ) (21)

(for deterministic mappings at and some δ > 0) such
that {Xt} has finite average power

∫ T
0 E[X2

t ]dt < ∞
and

dYt = Xtdt+ dBt. (22)

Then

1
2

∫ T

0
E
[
(Xt − E[Xt|Y t

0 ])2
]
dt = I

(
XT

0 → Y T
0

)
.

(23)

Note that since, in general, I
(
XT

0 → Y T
0

)
is not

invariant to the direction of the flow of time, Theorem
2 implies, as should be expected, that neither is the
causal MMSE for processes evolving in the generality
afforded by (21) and (22).

Proof of Theorem 2: For every t ≥ 0 and ε ≤ δ,

1
2

∫ t+ε−

t
E
[
(Xs − E[Xs|Y s

0 ])2
]
ds (24)

=
1
2

∫ t+ε−

t
E
[
E
[
(Xs − E[Xs|Y s

0 ])2|Y t−
0

]]
ds (25)

= E

[
1
2

∫ t+ε−

t
E
[
(Xs − E[Xs|Y s

0 ])2|Y t−
0

]
ds

]
(26)

=
∫ [

1
2

∫ t+ε−

t
E
[
(Xs − E[Xs|Y s

0 ])2|yt−0
]
ds

]
dP (yt−0 )

(27)
(a)
=
∫
I
(
Xt+ε−
t ;Y t+ε−

t |yt−0
)
dP (yt−0 ) (28)

= I
(
Xt+ε−
t ;Y t+ε−

t |Y t−
0

)
, (29)

where (a) is due to the following: since Y t−
0 , Xt−

0 ,W T
0

is independent of Bt+ε−
t , and Xt+ε−

t is determined by
Y t−

0 , Xt−
0 ,W T

0 , it follows that Y t−
0 , Xt+ε−

t is indepen-
dent of Bt+ε−

t . Thus, (a) is nothing but an application
of Duncan’s theorem on the conditional distribution
of (Xt+ε−

t , Bt+ε−
t ) given yt−0 to get equality between

the integrand of (27) and that of (28). Fixing now an
arbitrary t that satisfies maxi ti − ti−1 ≤ δ gives

1
2

∫ T

0
E
[
(Xt − E[Xt|Y t

0 ])2
]
dt (30)

=

[
N∑
i=1

1
2

∫ ti−

ti−1

E
[
(Xt − E[Xt|Y t

0 ])2
]]

(31)

+
1
2

∫ T

tn

E
[
(Xt − E[Xt|Y t

0 ])2
]

(32)

(a)
=

[
N∑
i=1

I
(
Y ti−
ti−1

;Xti−
0 |Y

ti−1−
0

)]
+ I

(
Y T
tn ;XT

0 |Y
tn−

0

)
(33)

= It
(
XT

0 → Y T
0

)
, (34)

where (a) follows by applying (29) on each of the
summands in (32) with the associations ti−1 ↔ t and
ti − ti−1 ↔ ε. Finally, since (34) holds for arbitrary t
satisfying maxi ti − ti−1 ≤ δ, by (6) we obtain

1
2

∫ T

0
E
[
(Xt − E[Xt|Y t

0 ])2
]

= I
(
XT

0 → Y T
0

)
. (35)

The evolution of the noise-free process in the above
theorem (equation (21)), which assumes a nonzero delay
in the feedback loop, is the standard evolution arising in
signal processing and communications (cf., e.g., [21]).
The result, however, can be extended to accommodate a
more general model with zero delay, as introduced and



developed in [22], by combining our arguments above
with those used in [22].

B. The Poisson Channel

The following result can be considered an analogue
of Duncan’s theorem for the case of Poisson noise.

Theorem 3 ( [23]). Let Y T
0 be a doubly stochastic

Poisson process and let XT
0 be its intensity process.

Then, provided E
∫ T

0 |Xt logXt|dt <∞,∫ T

0
E
[
φ(Xt)− φ

(
E[Xt|Y t

0 ]
)]
dt = I

(
XT

0 ;Y T
0

)
,

(36)
where φ(α) = α logα.

It is easy to verify that the condition stipulated in
the third item of Proposition 3 holds when Y T

0 is a
doubly stochastic Poisson process and XT

0 is its intensity
process. Thus, the above theorem could equivalently be
stated with directed rather than mutual information on
the right hand side of (36). Indeed, with continuous-time
directed information replacing mutual information, this
relationship remains true in much wider generality, as
the next theorem shows. In the statement of the theorem,
we use the notions of a point process and its predictable
intensity, as developed in detail in [24, Chapter II].

Theorem 4. Let Yt be a point process and let
Xt be its FYt -predictable intensity, where FYt =
σ(Xt

0) (the σ-field generated by Xt
0). Then, provided

E
∫ T

0 |Xt logXt|dt <∞,∫ T

0
E
[
φ(Xt)− φ

(
E[Xt|Y t

0 ]
)]
dt = I

(
XT

0 → Y T
0

)
.

(37)

V. COMMUNICATION OVER CONTINUOUS-TIME

CHANNELS WITH FEEDBACK

Consider a channel characterized via the following
ingredients:
• X and Y are the channel input and output alphabets.
• M is the message, uniformly distributed on
{1, 2, . . . , b2TRc} and independent of the stationary
and ergodic channel noise process {Wt}.

• Channel output process:

Yt = g(Xt
t−s,Wt) (38)

for some fixed s > 0.
• Encoding process: Xt = ft(M,Y t−∆−) for t ≥ 0

and some ∆ > 0 (and set arbitrarily for t < 0).
Here ∆ is the feedback delay. An encoding scheme for
the time interval [0, T ] is characterized by the family

of encoding functions {ft}Tt=0. While similar settings
were studied by Ihara [25], [26], the focus therein is the
information capacity, that is, the maximal mutual infor-
mation between the message and the output processes.
In contrast, we focus on the operational capacity, defined
as follows.

Definition 3. A rate R is said to be achievable with
feedback delay ∆ if for each T there exists a family of
encoding functions {ft}Tt=0 such that

P (M 6= M̂(Y T
0 )) T→∞−→ 0, (39)

where M̂(Y T
0 ) in (39) is the maximum likelihood es-

timate of M given Y T
0 , when employing the encoding

functions {ft}Tt=0.

Let

C∆ = sup{R : R is achievable with feedback delay ∆}
(40)

be the feedback capacity with delay ∆ and, finally, define
the feedback capacity by

C = sup
∆>0

C∆. (41)

Our goal is to characterize C∆ and C for the class of
channels defined by (41).

Our preliminary result suggests that C is given by

C = sup
∆>0

sup
S∆

lim
T→∞

1
T
I
(
XT

0 → Y T
0

)
, (42)

where the inner supremum in (42) is over S∆, which is
the set of all channel input processes of the form Xt =
gt(Ut, Y t−∆−), some family of functions {gt}Tt=0, and
some process UT0 which is independent of the channel
noise process W T

0 (appearing in (38)). Existence of the
limit in (42) follows a standard superadditivity argument;
recall that the input memory is bounded in (38). The
main difficulty in completing the proof is the fact that
chopping the time into small segments causes technical
difficulties such as not preserving the ergodicity of the
channel in the segment.

VI. CONCLUDING REMARKS AND RESEARCH

DIRECTIONS

The machinery developed here for directed informa-
tion between continuous-time stochastic processes ap-
pears to have several powerful applications, emerging
naturally both in estimation and communication theoretic
contexts. In [15], we provide further substantiation of the
significance of directed information in continuous time
through connections to the Kalman–Bucy filter theory.



One immediate goal of our future research is to complete
the characterization of feedback capacity as presented in
Section V and to establish the capacity of certain power-
constrained non-white Gaussian channels with feedback.
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