In the previous lecture we asked: how does the internet graph look like?

We looked for a reasonable model having:

1. Small diameter
2. Most nodes having small node degree (i.e., #connections)

We expressed the small diameter requirement as a logarithmic relationship:

\[d \approx \log N \]

In practice, I can reach a billion nodes in 9 hops. Currently, there are about 3 billion internet nodes, and studies through measurements give about 10 hops maximum. So it is reasonable. See link to Internet whois count & handout on hop-count on our web page.

A first model we examined was a random graph. This has the two properties we want, but it also has one important drawback:

NO STRUCTURE

Any node can connect to any other node with the same probability when \(p \approx N \), we get a giant connected component with a small diameter, but it looks like a giant "blob". The "Spaghetti Internet".

The "real internet" has structure, it is a collection of interconnected networks.
So we introduced a notion of *clustering coefficient*. We want a network that has high clustering and small diameter.

One possibility is to start with a regular graph, like a grid, or a ring, and then add random connections between the nodes to effectively reduce the diameter.

Watts-Strogatz model (1998)

QUESTION: At the end, how many "long distance" edges will you have?

There will be on average \(P \frac{NK}{2} \) "long distance" edges.

- \(P = 0 \) \(\Rightarrow \) Regular graph
- \(P = 1 \) \(\Rightarrow \) Random graph with node degree \(K \) and every edge occurring with probability

\[
P_{edge} = \frac{NK}{2} \frac{1}{\binom{N}{2}}
\]

This requires a bit of math to explain.

At the end we have \(M = NK \frac{P}{2} \) edges, and a graph \(G(N, M) \) of \(N \) nodes and \(M \) edges chosen at random among all graphs of this type.

In random graph model \(G(N, P_{edge}) \), \(M \approx \binom{N}{2} P_{edge} \)

so it follows that \(\binom{N}{2} P_{edge} = \frac{NK}{2} \Rightarrow P_{edge} \approx \frac{NK}{12} \)
Average path length in WS model is in between

\[
\begin{align*}
\beta &= 0 & \quad & E(d) = \frac{N}{2K} \\
\beta &= 1 & \quad & E(d) = \frac{\log N}{\log K}
\end{align*}
\] (regular ring) (random graph)

As \(\beta \to 1 \) it approaches the second value very rapidly.

The model also has large clustering for moderate values of \(\beta \) and a degree distribution similar to that of a random graph, namely:

\[P_k \]

\[\text{peak at } K \]

\[\text{exponential tail} \]

This means that all nodes have roughly the same degree \(\approx K \). In fact, the only way to change degree is if a node re-wires randomly to the same degree node more than once and for large \(N \) this is very unlikely.

Similar models can be obtained for grid or connecting "long distance" and for large networks. But is this the model of having almost constant node degree a good one?

We would like to have more variability in node degree distribution.

\[P_k \]

\[\text{power-law decay} \]