Problems from the book

Problem 1.1

The number of possible hosts is the number of possible IP addresses, that is, 2^{32}.

Problem 1.2

If IP addresses are assigned randomly, then a routing table should have an entry for each IP address, that is, 2^{32} entries.

Problem 1.4

The transmission of a packet of 1kByte over the link is

$$t_1 = \frac{1\text{kByte}}{100\text{Mbps}} = \frac{8 \times 10^3\text{bits}}{10^8\text{bps}} = 8 \times 10^{-5}\text{s}.$$

Let $t_2 = 0.13s$ be the time from the complete transmission of a packet and the complete reception of the ACK. If we wait an ACK after each transmitted packet, then the throughput is

$$R_1 = \frac{1\text{kByte}}{t_1 + t_2} = \frac{8 \times 10^3\text{bits}}{0.13008s} = 61.5\text{kbps}.$$

If we wait an ACK after the transmission of every N packets, the throughput becomes

$$R_2 = \frac{N \cdot 8 \times 10^3\text{bits}}{Nt_1 + t_2},$$

that is, R_2 tends to 100Mbps (the available rate) as $N \to \infty$.

Problem 2.1

At each time there are 40 active user on average (and they have to share the available 100Mbps). Thus, each user has an average throughput of 2.5Mbps.
Problem 2.3

By Little’s result, as T is the average time a packet spends in the system, the average number of packet is

$$L = \lambda T = 1000.$$

Problem 2.4

The service time is

$$\frac{1}{\mu} = \frac{1kByte}{10Mbps} = \frac{8 \times 10^3 bits}{10^7 bps} = 8 \times 10^{-4}s,$$

and so $\mu = 1250$ packets per second. The arrival rate, in number of packets per second is

$$\lambda_p = \frac{8Mbps}{1kByte} = 10^3.$$

The expected time in the system is

$$T = \frac{1}{\mu - \lambda_p} = \frac{1}{1250 - 1000} = 4ms.$$

The expected time in the queue is

$$T - \frac{1}{\mu} = 3.2ms.$$

Problem 2.7

The time a single packet need to be transmitted on a link is

$$t_1 = \frac{1kByte}{10Mbps} = 0.8ms.$$

Assuming that the propagation speed on the fiber is of $5\mu s$ per km (according to the book), the propagation time on each link is $t_2 = 50\mu s$. Let $t_3 = 50\mu s$ be the processing time at each node. The bottleneck is constituted by the transmission rate of a link, so the total time to transmit all $N = 20$ packets is

$$t_{tot} = N \cdot t_1 + 5t_2 + 4t_3 = 20 \cdot 0.8ms + 5 \cdot 0.05ms + 4 \cdot 0.05ms = 16.45ms.$$

Problem 1

M/M/1 Queue

1) Use the fact above to express π_k, $k > 0$, as a function of π_0.

$$\pi_k = \left(\frac{\lambda}{\mu}\right)^k \pi_0$$
2) Using \(\lambda < \mu \) and the fact that all \(\pi_k \)'s sum to 1, compute \(\pi_0 \) (as a function of \(\lambda \) and \(\mu \)).

\[
1 = \sum_{k=0}^{\infty} \pi_k = \pi_0 \sum_{k=0}^{\infty} \left(\frac{\lambda}{\mu} \right)^k = \pi_0 \frac{1}{1 - \lambda/\mu},
\]

because the sum converges as \(\lambda/\mu < 1 \). Hence, we have

\[
\pi_0 = 1 - \lambda/\mu.
\]

3) Using the results above, compute the expected number of packets in the system at any given time. As you learnt in class, you should get \(\lambda/\mu - \lambda \). You may find it useful that \(\rho = \lambda/\mu < 1 \).

Observe that \(\pi_0 = 1 - \rho \). Then, the expected number of packets in the system is

\[
\sum_{k=0}^{\infty} k \pi_k = \pi_0 \sum_{k=0}^{\infty} k \rho^k = \rho \lambda (1 - \rho) \sum_{k=0}^{\infty} k \rho^{k-1}
\]

\[
= \rho (1 - \rho) \sum_{k=0}^{\infty} \frac{\partial}{\partial \rho} \rho^k = \rho (1 - \rho) \frac{\partial}{\partial \rho} \left(\sum_{k=0}^{\infty} \rho^k \right)
\]

\[
= \rho (1 - \rho) \frac{\partial}{\partial \rho} \frac{1}{1 - \rho} = \frac{\rho}{1 - \rho}
\]

\[
= \frac{\lambda}{\mu - \lambda}.
\]

Notice that the sum converges for \(\rho < 1 \), and this allowed to swap the derivative and the sum.

4) What is the expected time \(T_1 \) that a packet spends in the system (queue and service) if the arrival rate is \(\lambda \) and the departure rate is \(3 \mu \)?

\[
T_1 = \frac{1}{3\mu - \lambda}.
\]

M/M/c Queue

5) What is \(\pi_0 \)?

As before, all the \(\pi \)'s must sum up to 1. Therefore,

\[
1 = \sum_{k=0}^{\infty} \pi_k
\]

\[
= \pi_0 \sum_{k=0}^{c-1} \frac{(cp_c)^k}{k!} + \pi_0 \frac{(cp_c)^c}{c!} \sum_{k=0}^{\infty} \rho^k
\]

\[
= \pi_0 \left(\sum_{k=0}^{c-1} \frac{(cp_c)^k}{k!} + \frac{(cp_c)^c}{c!} \frac{1}{1 - \rho_c} \right)
\]
It follows that
\[\pi_0 = \left(\sum_{k=0}^{c-1} \frac{(cp_c)^k}{k!} + \frac{(cp_c)^c}{c!} \frac{1}{1 - \rho_c} \right)^{-1} \]

The probability that all servers are occupied (and thus a new arrived packet has to wait in the queue) is
\[\pi_{c+} = \sum_{k=c}^{\infty} \pi_k. \]

This means that, with probability \(\pi_{c+} \) the new packet has to wait in line, while with probability \(1 - \pi_{c+} \) it is served right away.

6) Compute \(\pi_{c+} \) as a function of \(c, \rho_c, \pi_0 \).
\[\pi_{c+} = \sum_{k=c}^{\infty} \pi_k = \frac{(cp_c)^c}{c!} \sum_{k=0}^{\infty} \rho^k = \pi_0 \frac{(cp_c)^c}{c!} \frac{1}{1 - \rho_c}. \]

You could also (but, again, you don’t have to) show that the expected time \(T_c \) that a packet spends in this system (queue and service) is
\[T_c = \frac{\rho_c}{\lambda(1 - \rho_c)} \pi_{c+}. \]

7) What is the expected time \(T_3 \) that a packet spends in a M/M/3 queue with arrival rate \(\lambda \) and three servers each with service rate \(\mu \)? (Do not write the complete expression for \(\pi_{3+} \))

First compute
\[\rho_3 = \lambda \frac{3}{3\mu} \]

Then,
\[T_3 = \frac{\rho_3}{\lambda(1 - \rho_3)} \pi_{3+} = \frac{1}{3\mu - \lambda} \pi_{3+} < \frac{1}{3\mu - \lambda}, \]
as \(\pi_{3+} < 1 \).

8) Compare \(T_3 \) with \(T_1 \) (computed above). For the same price, would you rather buy one outgoing link with rate 30Mbps or three outgoing links each with rate 10Mbps (assuming that you have a box that distributes your outgoing flow between them)?

You would prefer the second choice as the expected delay is smaller.

Problem 2

1) Taking the derivative of \(F_p(x) \), \(p_p(x) = \alpha(x_m)^{\alpha}x^{-\alpha-1} \) for \(x \geq x_m \), and \(p_p(x) = 0 \) for \(x < x_m \).
2) Computing the integral,
\[\int_{-\infty}^{\infty} p_p(x)dx = \int_{x_m}^{\infty} \alpha(x_m)^{\alpha}x^{-\alpha-1}dx = \alpha(x_m)^{\alpha}(-1/\alpha)((-x_m)^{-\alpha}) = 1. \]
3) \(\bar{F}(x) = \left(\frac{x_m}{x} \right)^\alpha \) for \(x \geq x_m \), \(\bar{F}(x) = 1 \) for \(x < x_m \).

4)

\[
E[X] = \int_{-\infty}^{\infty} xp_p(x)dx = \alpha(x_m)^\alpha \int_{x_m}^{\infty} x^{-\alpha} dx.
\]

If \(\alpha > 1 \) then the integral is finite, and \(E[X] = \frac{\alpha x_m}{\alpha-1} \). If \(\alpha \leq 1 \) then the integral is infinite, and \(E[X] = \infty \).

5) Consider the density function \(p_p(x) \) for \(x \geq x_m \), and write it as \(p_p(x) = \alpha(x_m/x)^\alpha x^{-1} \). Then

\[
\lim_{\alpha \to \infty} \alpha(x_m/x)^\alpha x^{-1} = \infty
\]

if \(x = x_m \), while

\[
\lim_{\alpha \to \infty} \alpha(x_m/x)^\alpha x^{-1} = 0
\]

for \(x > x_m \). For \(x < x_m \), \(\lim_{\alpha \to \infty} p_p(x) = \lim_{\alpha \to \infty} 0 = 0 \).

Therefore, when \(\alpha \to \infty \), \(p_p(x) \) tends to a Dirac’s delta function centered at \(x_m \).

6) \(\Pr(Z < z) = \Pr(\log(X/x_m) < z) = \Pr(X < x_m e^z) \)

7) Continuing from the question above, \(\Pr(X < x_m e^z) = 1 - \left(\frac{x_m}{x_m e^z} \right)^\alpha = 1 - e^{-z^\alpha} \), that is the Cumulative Distribution Function of an Exponential random variable.