1. Plot poisson distribution for $\lambda = 1$, $\lambda = 4$, $\lambda = 10$ using Matlab.

2. Expected distribution. What is the expected vertex degree distribution for an Erdos-Renyi graph with 100 nodes and edge probability $p = 0.01$. Call this value λ. Plot the node degree distribution for this value of λ.

3. In class we encountered the Pareto distribution, and the exponential distribution. In this problem we will visually understand why the former is said to be a heavy-tail distribution.

 A continuous random variable has the Pareto distribution with parameters $\alpha > 0$ and $x_m > 0$ if its probability density function is given by
 \[
 f_P(x; \alpha, x_m) = \begin{cases} \frac{x_m^\alpha}{x^\alpha} & \text{for } x \geq x_m, \\ 0 & \text{for } x < x_m. \end{cases}
 \]

 The mean is given by
 \[
 m_P(\alpha, x_m) = \begin{cases} \frac{x_m\alpha}{\alpha-1} & \text{for } \alpha > 1, \\ \infty & \text{for } \alpha \leq 1. \end{cases}
 \]

 A continuous random variable has the Exponential distribution with parameter $\lambda > 0$ if its probability density function is given by
 \[
 f_E(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x \geq 0, \\ 0 & \text{for } x < 0. \end{cases}
 \]

 The mean is given by $m_E(\lambda) = 1/\lambda$.

1) Fix a value of α of your choice, and (using the programming language of your choice) plot $f_E(x; \lambda)$ in log-log scale.

2) For $\alpha \in \{1, 2, 3, 4, 5, 6, 7, 8\}$, consider the distribution $f_P(x; \alpha, x_m)$ such that $m_P(\alpha, x_m) = m_E(\lambda)$. That is, for each α you have to set $x_m\alpha = 1/\lambda$, and compute the corresponding value of x_m (call it $x_m(\alpha)$).

3) For $\alpha \in \{1, 2, 3, 4, 5, 6, 7, 8\}$, plot $f_P(x; \alpha, x_m(\alpha))$, for the value of $x_m(\alpha)$ computed in part 2), in the same figure were you plotted $f_E(x; \lambda)$. You should now have an understating why the Pareto distribution is said to have an heavy tail. Explain your understanding.

4. Relationship between Poisson and exponential distributions.

 Let N be the no. of packets arriving at a switch during the time interval $(0, t)$ with a Poisson degree distribution, i.e., $N \sim \text{Poisson} (\lambda t)$. Let X be the time until first packet arrival. Find the distribution of X.