Fourier Series Properties

We can represent a periodic function as a sum of sinusoidal components with different coefficients, i.e. a Fourier Series. However, the calculations of the coefficients is often tedious and time-consuming. We can use the properties of the Fourier series to simplify calculations of similar signals. Proving each of these properties is a good exercise.

Fourier Series as an Input to an LTI System

A Fourier series is a sum of sinusoidal components. We know how to analyze LTI systems for sinusoidal inputs, so by linearity, we can determine the output when we have a periodic input. Let \(x(t) \) be periodic with fundamental frequency \(\omega_0 \)

\[
x(t) = \sum_{n=-\infty}^{\infty} X_n e^{j\omega_0 nt} \rightarrow H(\omega) \rightarrow y(t) = \sum_{n=-\infty}^{\infty} H(n\omega_0) X_n e^{j\omega_0 nt}
\]

Notice that \(y(t) \) is also a periodic function with fundamental frequency \(\omega_0 \). We can represent using a Fourier series with coefficients:

\[
Y_n = X_n H(n\omega_0)
\]

Linearity and Scaling

If we have two periodic functions \(f(t) \) and \(g(t) \) with fundamental frequency \(\omega_0 \) and coefficients \(F_n \) and \(G_n \) respectively.

Let \(h(t) = a f(t) + b g(t) \)

\(h(t) \) will also be periodic with fundamental frequency \(\omega_0 \) and coefficients:

\[
H_n = a F_n + b G_n
\]

Time Reversal

If we have two periodic functions \(f(t) \) and \(g(t) \) such that \(g(t) = f(-t) \), then \(G_n = F_{-n} \).

Time Shifting

If we have two periodic functions \(f(t) \) and \(g(t) \) such that \(g(t) = f(t - t_0) \), then \(G_n = F_n e^{-j\omega_0 n t_0} \).

Time Scaling

If we have two periodic functions \(f(t) \) and \(g(t) \) such that \(g(t) = f(at) \) and the fundamental frequency of \(f(t) \) is \(\omega_0 \), then \(G_n = F_n \), but the fundamental frequency of \(g(t) \) is \(a\omega_0 \).
Time Derivative

If we have two periodic functions $f(t)$ and $g(t)$ such that $g(t) = \frac{df(t)}{dt}$, then $G_n = j\omega_0 n F_n$.

Time Multiplication

If we have three periodic functions $f(t)$, $g(t)$, and $h(t)$ such that $h(t) = f(t) g(t)$, the coefficients for $h(t)$ can be determined from the coefficients for $f(t)$ and $g(t)$

$$H_n = \sum_{k=-\infty}^{\infty} F_k G_{n-k}$$

Parseval’s Theorem

The *average power in a period* of a periodic function can be calculated two ways:

$$P_{avg} = \frac{1}{T} \int_T |f(t)|^2 dt = \sum_{n=-\infty}^{\infty} |F_n|^2$$

Sometimes the calculations for one method are much simpler than the other.

Real Functions

If $f(t)$ is a real function, then $F_n = F^*_{-n}$. The Fourier series of a real function can be simplified to a sum of sines and cosines.

This follows from the fact that for a real function $f(t) = f^*(t)$.

Imaginary Functions

If $f(t)$ is an imaginary function, then $F_n = -F^*_{-n}$

This follows from the fact that for a real function $f(t) = -f^*(t)$.

Even Functions

If $f(t)$ is an even function, then $F_n = F_{-n}$. The Fourier series of an even function can be simplified to a sum of cosines.

This follows from the fact that for an even function $f(t) = f(-t)$.

Odd Functions

If $f(t)$ is an odd function, then $F_n = -F_{-n}$. The Fourier series of an odd function can be simplified to a sum of sines.

This follows from the fact that for an even function $f(t) = -f(-t)$.

Examples

1. Write \(f(t) \) as a sum of sines and cosines and find the average power in a period, where

We note that \(f(t) \) has period 2 and in the period \([-1, 1), f(t) = At\). So for all \(n \neq 0 \), we have

\[
F_n = \frac{1}{T} \int_T f(t) e^{-j\omega_0 nt} dt = \frac{A}{2} \int_{-1}^1 t e^{-j\pi nt} dt
\]

\[
= \frac{A}{-j2\pi n} \left(te^{-j\pi nt}|_{-1}^1 - \int_{-1}^1 e^{-j\pi nt} dt \right)
\]

\[
= \frac{-A}{j2\pi n} \left(e^{-j\pi n} + e^{j\pi n} + \frac{1}{j\pi n} (e^{-j\pi n} - e^{j\pi n}) \right) = \frac{-A}{j\pi n} (-1)^n.
\]

In the second line, we divide by 0 when \(n = 0 \), so

\[
F_0 = \frac{A}{2} \int_{-1}^1 t e^0 dt = 0.
\]

Thus we have

\[
f(t) = \sum_{n=-\infty}^{\infty} F_n e^{j\omega_0 nt} = \sum_{n=-\infty}^{\infty} \frac{-A}{j\pi n} (-1)^n e^{j\pi n} - \frac{-A}{j\pi n} (-1)^{-n} e^{-j\pi nt}
\]

\[
= -A \sum_{n=1}^{\infty} (-1)^n \left(\frac{e^{j\pi nt} - e^{-j\pi nt}}{j\pi n} \right) = -2A \sum_{n=1}^{\infty} (-1)^n \sin(\pi nt)
\]

The average power in a period is a straight-forward calculation in the time domain:

\[
\frac{1}{2} \int_{-1}^1 f(t)^2 dt = \frac{A^2}{2} \int_{-1}^1 t^2 dt = \frac{A^2}{3}.
\]

By Parseval’s Theorem:

\[
\frac{A^2}{3} = \sum_{n=-\infty}^{\infty} |F_n|^2 = \sum_{n=-\infty}^{\infty} \left| \frac{-A}{j\pi n} (-1)^n \right|^2 = \sum_{n=-\infty}^{\infty} \frac{A^2}{\pi^2 n^2} = \sum_{n=1}^{\infty} \frac{2A^2}{\pi^2 n^2}
\]

Thus we have

\[
\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}
\]

which is a beautiful bit of mathematics :)
2. Write \(g(t) \) as a sum of sines and cosines and find the Fourier series components \(G_n \), where

\[
g(t) = 1 + 2A \sum_{n=1}^{\infty} (-1)^n \sin(\pi n(2t - 2)) = 1 + A \sum_{n=1}^{\infty} (-1)^n \sin(2\pi nt).
\]

Note that we have \(g(t) = -f(2t - 2) + 1 \), so

In order to find \(G_n \) in terms of \(F_n \), let’s use some intermediate steps:

Let \(x(t) = -f(t - 1) \), then \(x(t) \) is periodic with period 2 and \(X_n = -F_n e^{-j\pi n} \).

Let \(y(t) = x(2t) \), then \(y(t) \) is periodic with period 1 and \(Y_n = X_n \).

Then \(g(t) = y(t) + 1 \), so for \(n \neq 0 \),

\[
G_n = -F_n(-1)^n = \frac{A}{j\pi n}
\]

and \(G_0 = F_0 + 1 = 1 \).

3. Suppose \(g(t) \) is the input to an LTI system with frequency response \(H(\omega) = j\omega \). Find the output \(z(t) \). Approximately what type of waveform is \(z(t) \)?

Since \(g(t) \) is periodic with period 1, \(z(t) \) is also periodic with period 1 and the Fourier series coefficients of \(z(t) \) are given by

\[
Z_n = H(\omega_0 n)G_n = j\omega_0 n G_n
\]

which implies

\[
\frac{d}{dt}g(t) = A.
\]

4. Suppose \(g(t) \) is the input to an LTI system with frequency response \(H(\omega) = 2 \), when \(|\omega| > \pi \) and is 0 otherwise. Plot the output \(w(t) \).

Since \(g(t) \) is periodic with period 1, \(w(t) \) is also periodic with period 1 and the Fourier series coefficients of \(w(t) \) are given by

\[
W_n = H(\omega_0 n)G_n = H(2\pi n)G_n = \left\{
\begin{array}{ll}
G_n & \text{if } |2\pi n| > \pi \\
0 & \text{otherwise}
\end{array}
\right.
\]

So we have \(W_n = G_n \) for all \(n \neq 0 \) and \(W_0 = 0 \), which implies \(w(t) = g(t) - G_0 = g(t) - 1 \).