Solutions to Final Examination

1. Noisy forecasters (60 points).
Suppose that tomorrow’s weather is modeled by \(X \sim \text{Bern}(1/2) \), namely, it is rainy (i.e., \(X = 1 \)) with probability 1/2 and sunny (i.e., \(X = 0 \)) with probability 1/2. There are three weather forecasters—Alice, Bob, and Charlie—who predict the weather as \(A, B, \) and \(C \), respectively, each with 1/4 probability of error. In other words, their predictions are the outputs of the binary symmetric channel (BSC) with input \(X \) and crossover probability \(p = 1/4 \). We assume that their prediction errors are independent; thus

\[
p_{A,B,C|X}(a, b, c|x) = p_{A|X}(a|x)p_{B|X}(b|x)p_{C|X}(c|x)
\]

for \(x, a, b, c \in \{0, 1\} \). Let

\[
Y = A + B + C
\]
denote the number of forecasters who predict that it will be rainy tomorrow.

(a) Find the conditional pmf of \(Y \) given \(X \).
(b) Find the pmf of \(Y \).
(c) Find the conditional pmf of \(X \) given \(Y \).
(d) Find the conditional pmf of \(X \) given \(\{Y \leq 1\} \).
(e) Find the decision rule \(d(y) \) that minimizes the probability of error \(P\{X \neq d(Y)\} \).
(f) Find the associated probability of error.

Solution:

(a) We have

\[
p_{Y|X}(0|0) = P\{Y = 0|X = 0\}
= P\{A = 0, B = 0, C = 0|X = 0\}
= p_{A|X}(0|0)p_{B|X}(0|0)p_{C|X}(0|0)
= (p_{A|X}(0|0))^3
= \left(\frac{3}{4}\right)^3 = \frac{27}{64}.
\]

Similarly, we have

\[
p_{Y|X}(0|0) = p_{Y|X}(3|1) = 27/64,
p_{Y|X}(1|0) = p_{Y|X}(2|1) = 27/64,
p_{Y|X}(2|0) = p_{Y|X}(1|1) = 9/64,
p_{Y|X}(3|0) = p_{Y|X}(0|1) = 1/64.
\]
(b) From part (a), we have
\[p_Y(0) = p_{Y|X}(0|0)p_X(0) + p_{Y|X}(0|1)p_X(1) = \frac{7}{32}. \]
Similarly, we have \(p_Y(1) = p_Y(2) = \frac{9}{32} \) and \(p_Y(3) = \frac{7}{32}. \)

(c) By the Bayes’ rule, we have
\[p_{X|Y}(0|0) = \frac{p_{Y|X}(0|0)p_X(0)}{p_Y(0)} = \frac{27}{28}. \]
Similarly, we have
\[p_{X|Y}(0|0) = \frac{27}{28} \quad \text{and} \quad p_{X|Y}(1|0) = \frac{1}{28}, \]
\[p_{X|Y}(0|1) = \frac{3}{4} \quad \text{and} \quad p_{X|Y}(1|1) = \frac{1}{4}, \]
\[p_{X|Y}(0|2) = \frac{1}{4} \quad \text{and} \quad p_{X|Y}(1|2) = \frac{3}{4}, \]
\[p_{X|Y}(0|3) = \frac{1}{28} \quad \text{and} \quad p_{X|Y}(1|3) = \frac{27}{28}. \]

(d) Again, by the Bayes’ rule, we have
\[
P\{X = 0|Y \leq 1\} = \frac{P\{Y \leq 1|X = 0\}P\{X = 0\}}{P\{Y \leq 1\}}
= \frac{P\{Y = 0|X = 0\}P\{X = 0\} + P\{Y = 1|X = 0\}P\{X = 0\}}{P\{Y = 0\} + P\{Y = 1\}}
= \frac{27}{32}
\]
and
\[
P\{X = 1|Y \leq 1\} = \frac{5}{32}.
\]

(e) Since \(P\{X = 0\} = P\{X = 1\} = \frac{1}{2} \), the MAP rule becomes the ML rule. Therefore,
\[
d(y) = \begin{cases}
0 & \text{for } y = 0 \text{ or } 1, \\
1 & \text{for } y = 2 \text{ or } 3.
\end{cases}
\]

(f) The associated probability of error is
\[
P_e = P\{X \neq d(Y)\}
= P\{X \neq d(Y)|X = 0\}P\{X = 0\} + P\{X \neq d(Y)|X = 1\}P\{X = 1\}
= P\{Y = 2 \text{ or } 3|X = 0\}P\{X = 0\} + P\{Y = 0 \text{ or } 1|X = 1\}P\{X = 1\}
= \frac{5}{32}.
\]
2. Estimation (20 points).
Let X_1, X_2, X_3 be i.i.d. random variables with finite mean and variance. Let $Y = X_1 + X_2 + X_3$.

(a) Find the MMSE estimate of X_1 given Y.
(b) Find the MMSE estimate of $X_1 + 2X_2$ given Y.

Solution:
(a) This problem is very similar to Problem 3 in the midterm. First note that by symmetry
$$E(X_1|Y) = E(X_2|Y) = E(X_3|Y).$$
Furthermore,
$$Y = E(X_1 + X_2 + X_3|Y) = E(X_1|Y) + E(X_2|Y) + E(X_3|Y) = 3E(X_1|Y).$$
Hence, $E(X_1|Y) = \frac{1}{3}Y$. The MMSE estimate of X_1 given Y is
$$E(X_1|Y) = \frac{1}{3}Y.$$
(b) Similarly, the MMSE estimate of $X_1 + 2X_2$ given Y is
$$E(X_1 + 2X_2|Y) = E(X_1|Y) + 2E(X_2|Y) = 3E(X_1|Y) = Y.$$

3. Moving average process (80 points)
Let
$$X_n = Z_{n-1} + Z_n, \quad n = 1, 2, \ldots,$$
where Z_0, Z_1, Z_2, \ldots are i.i.d. $\sim N(0, 1)$. Let
$$Y_n = X_{n-1} - X_n, \quad n = 2, 3, \ldots.$$

(a) Find the mean and autocorrelation functions of $\{Y_n\}$.
(b) Is $\{Y_n\}$ wide-sense stationary? Justify your answer.
(c) Is $\{Y_n\}$ strict-sense stationary? Justify your answer.
(d) Is $\{Y_n\}$ Markov?
(e) Is $\{Y_n\}$ independent-increment?
(f) Find $E(Y_2|Y_3)$.
(g) Find $E(Y_2|Y_4)$.
(h) Find $E(Y_2|Y_3, Y_4)$.

Solution: See the last page.

4. Random-delay mixture (40 points).
Let $\{X(t)\}, -\infty < t < \infty$, be a zero-mean wide-sense stationary process with autocorrelation function $R_X(\tau) = e^{-|\tau|}$. Let
$$Y(t) = X(t - U),$$
where U is a random delay, independent of $\{X(t)\}$. Suppose that $U \sim Bern(1/2)$, that is,
$$Y(t) = \begin{cases} X(t) & \text{with probability } 1/2, \\ X(t-1) & \text{with probability } 1/2. \end{cases}$$
(a) Find the mean and autocorrelation functions of \(\{Y(t)\} \).

(b) Is \(\{Y(t)\} \) wide-sense stationary? Justify your answer.

(c) Find the average power \(\mathbb{E}(Y(t)^2) \) of \(\{Y(t)\} \).

(d) Now suppose that \(U \sim \text{Exp}(1) \), i.e., \(f_U(u) = e^{-u}, \; u \geq 0 \). Find the autocorrelation function of \(\{Y(t)\} \).

Solution:

(a) By the iterated expectation and the independence of \(U \) and \(\{X(t)\} \), we have

\[
\mathbb{E}(Y(t)) = \mathbb{E}(X(t - U)) \\
= \mathbb{E}[\mathbb{E}(X(t - U)|U)] \\
= \frac{1}{2} \mathbb{E}(X(t)|U = 0) + \frac{1}{2} \mathbb{E}(X(t - 1)|U = 1) \\
= \frac{1}{2} \mathbb{E}(X(t)) + \frac{1}{2} \mathbb{E}(X(t - 1)) \\
= 0
\]

and

\[
R_Y(t_1, t_2) = \mathbb{E}(Y(t_1)Y(t_2)) \\
= \mathbb{E}(X(t_1 - U)X(t_2 - U)) \\
= \mathbb{E}[\mathbb{E}(X(t_1 - U)X(t_2 - U)|U)] \\
= \frac{1}{2} \mathbb{E}(X(t_1)X(t_2)|U = 0) + \frac{1}{2} \mathbb{E}(X(t_1 - 1)X(t_2 - 1)|U = 1) \\
\overset{(a)}{=} \mathbb{E}(X(t_1)X(t_2)) \\
= e^{-|t_1 - t_2|}
\]

where (a) follows by the stationarity of \(\{X(t)\} \).

(b) Since \(\mathbb{E}(Y(t)) \) and \(R_Y(t_1, t_2) \) are time invariant, it is WSS.

(c) From part (a), we have

\[
\mathbb{E}(Y(t)^2) = R_X(0) = 1.
\]

(d) For \(U \sim \text{Exp}(1) \), we have

\[
\mathbb{E}(Y(t)) = \mathbb{E}(X(t - U)) \\
= \mathbb{E}[\mathbb{E}(X(t - U)|U)] \\
= \int_0^\infty \mathbb{E}(X(t - u))e^{-u}du \\
= 0
\]
and

\[R_Y(t_1, t_2) = \mathbb{E}(Y(t_1)Y(t_2)) \]
\[= \mathbb{E}(X(t_1 - U)X(t_2 - U)) \]
\[= \mathbb{E}[\mathbb{E}(X(t_1 - U)X(t_2 - U)|U)] \]
\[= \int_0^\infty \mathbb{E}(X(t_1 - u)X(t_2 - u)e^{-u} du \]
\[= \int_0^\infty R_X(t_1 - t_2)e^{-u} du \]
\[= R_X(t_1 - t_2) \]
\[= e^{-|t_1 - t_2|}. \]

Note that \(\{Y(t)\} \) is WSS with \(R_Y(t_1, t_2) = R_X(t_1, t_2) \) for any random delay \(U \). In fact, \(\{Y(t)\} \) has the same distribution as \(\{X(t)\} \), not only the first and second moments.
Correction of Problem 3

a. \[R_X(n) = \begin{cases} \frac{2}{3} & , n = 0 \\ \frac{1}{3} & , n = \pm 1 \\ 0 & \text{otherwise} \end{cases} \]

d. No,
\[Y_n = Z_{n-2} - Z_n, \quad Y_{n-1} = Z_{n-3} - Z_{n-1}, \quad Y_{n-2} = Z_{n-4} - Z_{n-2} \]
The probability distribution of \(Y_n | Y_{n-1}, Y_{n-2} \) is equal to that of \(Y_n | Y_{n-1} \), since \(Y_{n-1} \) is independent of \(Y_n \) and \(Y_{n-2} \).

e. \(Y \) is the output of \(X \) through the LTI system \(h(i) = \begin{cases} 1, & i = 1 \\ -1, & i = 0 \\ 0, & \text{o.w.} \end{cases} \)

As a result, \(Y \) is also WSS and then apply the argument of the solution.

f. Since \((Z_0, Z_2)\) and \((Z_1, Z_3)\) are independent, \(Y_2 = Z_0 - Z_2 \) and \(Y_3 = Z_1 - Z_3 \) are independent. \[E(Y_2 | Y_3) = E(Y_2) = E(Z_0) - E(Z_2) = 0 \]
\[E(Y_2 | Y_3) = E(Y_2) = E(Z_0) - E(Z_2) = 0 \]

g. \(E(Y_2 | Y_4) \) is the MMSE estimate of \(Y_2 \), and \((Y_2, Y_4)\) are jointly Gaussian.

Because of that, it is just the linear estimate of \(Y_2 \) given \(Y_4 \).
\[E(Y_2 | Y_4) = \frac{E(Y_2 Y_4)}{\sigma_Y^2} Y_4 = -\frac{1}{2} Y_4, \text{ where } E(Y_2 Y_4) = -1 \]

h. As in d., the probability distribution of \(Y_2 | Y_3, Y_4 \) is equal to that of \(Y_2 | Y_4 \).
\[E(Y_2 | Y_3, Y_4) = E(Y_2 | Y_4) = -\frac{1}{2} Y_4 \]