ENTROPY OF AN I.I.D. SOURCE

Let an I.I.D. source have \(M \) source letters that occur with probabilities \(p_1, p_2, \ldots, p_M \). Of course \(\sum_{\alpha=1}^{M} p_\alpha = 1 \).

The entropy of the source \(S \) is denoted \(H(S) \) and is defined as

\[
H(S) = \sum_{\alpha=1}^{M} p_\alpha \log_2 \frac{1}{p_\alpha} = -\sum_{\alpha=1}^{M} p_\alpha \log_2 p_\alpha
\]

\(H_a(S) = E \left[\log_a \frac{1}{p_\alpha} \right] \)

The base of the logarithms is usually taken to be equal to 2. In that case \(H(S) \) is written as \(H_2(S) \) and is measured in units of "bits".

Other bases can be used. Since

\[
\log_a x = (\log_b x)(\log_b a) = (\log_b x) / (\log_b a)
\]

Then

\[
H_a(S) = H_2(S) \cdot \log_a b = H_2(S) / \log_a b
\]
A USEFUL THEOREM

Let \(p_1, p_2, \ldots, p_M \) be one set of probabilities and let \(p'_1, p'_2, \ldots, p'_M \) be another set of probabilities. (Note \(\sum_{i=1}^{M} p_i = 1 \) and \(\sum_{i=1}^{N} p'_i = 1 \))

Theorem

\[
\sum_{i=1}^{M} p_i \log \frac{1}{p_i} \leq \sum_{i=1}^{M} p_i \log \frac{1}{p'_i} \quad \text{with equality if } p_i = p'_i \quad \text{for } i = 1, 2, \ldots, M
\]

Proof

First note that \(\ln x \leq x - 1 \) with equality if \(x = 1 \)

\[
\sum_{i=1}^{M} p_i \log \frac{p_i}{p'_i} = \left(\sum_{i=1}^{M} p_i \ln \frac{p_i}{p'_i} \right) \log e
\]

\[
\leq (\log e) \sum_{i=1}^{M} p_i \left(\frac{p_i}{p'_i} - 1 \right)
\]

\[
= (\log e) \left(\sum_{i=1}^{M} p'_i - \sum_{i=1}^{M} p_i \right) = 0
\]

\[
\therefore \sum_{i=1}^{M} p_i \log \frac{1}{p_i} - \sum_{i=1}^{M} p_i \log \frac{1}{p'_i} = 0
\]

\[
\sum_{i=1}^{M} p_i \log \frac{1}{p_i} \leq \sum_{i=1}^{M} p_i \log \frac{1}{p'_i}
\]
MORE ON ENTROPY

1. For an equally likely i.i.d. source with M source letters

$$H_2(S) = \log_2 M \quad (\text{or } H_0(S) = \log_2 M, \text{any } a_i)$$

2. For any i.i.d. source with M source letters

$$0 \leq H_2(S) \leq \log_2 M \quad \text{follows from previous theorem with } p_i' = \frac{1}{M}, \forall i$$

$$\text{or } 0 \leq H_0(S) \leq \log_2 M, \text{any } a_i$$

3. Consider an i.i.d. source with M source letters, S. If we consider encoding m source letters at a time, this is an i.i.d. source with M^m source letters. Call this the mth extension of the source and denote it by S^m. Then

$$H_2(S^m) = m \cdot H_2(S) \quad \text{(or } H_0(S^m) = m \cdot H_0(S), \text{any } a_i)$$

The proofs are omitted but are easy.
COMPUTATION OF ENTROPY (base 2)

Example 2

\[M=2 \quad (p_1, p_2) = (0.9, 0.1) \]

\[H_2(s) = 0.9 \log_2 \frac{1}{0.9} + 0.1 \log_2 \frac{1}{0.1} = 0.469 \text{ bits} \]

From before we gave Huffman codes for this source and extensions of this source for which

\[\bar{L}_1 = 1 \]
\[\bar{L}_{2/2} = 0.645 \]
\[\bar{L}_{3/3} = 0.533 \]
\[\bar{L}_{4/4} = 0.49 \]

Note that \(\bar{L}_m/m \geq H_2(s) \)

but as \(m \) gets larger \(\bar{L}_m/m \) is getting closer to \(H_2(s) \).

Holds in general:

\[\Rightarrow \text{One can prove that for a binary Huffman code} \]

\[H_2(s) \leq \bar{L}_m/m < H_2(s) + \frac{1}{m} \]
COMPUTATION OF ENTROPY (BASE 2)

EXAMPLE 2

\[M = 3 \quad (p_1, p_2, p_3) = (0.5, 0.35, 0.15) \]

\[H_2(\mathcal{S}) = 0.5 \log_2 0.5 + 0.35 \log_2 0.35 + 0.15 \log_2 0.15 = 1.44 \text{ bits} \]

But from before we gave codes for this source such that

1 symbol at a time \(\bar{L}_1 = 1.5 \)

2 symbols at a time \(\frac{\bar{L}_2}{2} = 1.46 \)
COMPUTATION OF ENTROPY (BASE 2)

Example 3

\[M = 4 \quad (p_1, p_2, p_3, p_4) = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8} \right) \]

\[H_2(S) = \frac{1}{2} \log_2 \frac{1}{\frac{1}{2}} + \frac{1}{4} \log_2 \frac{1}{\frac{1}{4}} + \frac{1}{8} \log_2 \frac{1}{\frac{1}{8}} + \frac{1}{8} \log_2 \frac{1}{\frac{1}{8}} \]

\[= 1.75 \text{ BITS} \]

But from before we gave the code

\[
\begin{align*}
\frac{1}{2} & \quad 0 \\
\frac{1}{4} & \quad 10 \\
\frac{1}{8} & \quad 110 \\
\frac{1}{8} & \quad 111
\end{align*}
\]

\[\bar{L}_1 = 1.75 \]

In this special case, \(\bar{L}_1 = H_2(S) \). Thus one cannot improve on the efficiency of the code by encoding several letters at a time.
Significance of Entropy (Base 2)

For any U.D. code corresponding to the Nth extension of the IID source S, for each \(n = 1, 2, \ldots \)

\[
\frac{L_n}{N} \geq H(S)
\]

For a binary Huffman code corresponding to the Nth extension of the IID source S

\[
\frac{L_n}{N} \geq H_2(S) \quad \text{and} \quad \frac{L_n}{N} < H_2(S) + \frac{1}{N}
\]

But this implies

\[
\lim_{N \to \infty} \frac{L_n}{N} \to H(S)
\]
NON-BINARY CODE WORDS

The code symbols that make up the codewords can be from a higher order alphabet than 2.

Example

1-1-0 source \(\{A, B, C, D, E\} \)

<table>
<thead>
<tr>
<th>Source Symbols</th>
<th>Ternary Code</th>
<th>Quaternary Code</th>
<th>5-Level Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>21</td>
<td>30</td>
<td>3</td>
</tr>
<tr>
<td>E</td>
<td>22</td>
<td>31</td>
<td>4</td>
</tr>
</tbody>
</table>

Again, we are only interested in U.D. codes (where each concatenation of code words can be decoded in only one way).

A lower bound to the average code length of any U.D. code with \(r \)-levels is \(H_2(s) \) where

\[
H_2(s) = \sum_{\lambda=1}^{M} \rho_\lambda \log_2 \frac{1}{\rho_\lambda}
\]

For example, for a ternary code, the average length \(\bar{l}/m \), is no less than \(H_3(s) \).
KRAFT INEQUALITY

A necessary and sufficient condition for the construction of an instantaneous code with \(M \) code words of lengths \(l_1, l_2, \ldots, l_M \), where the code symbols take on \(r \) different values is that

\[
\sum_{i=1}^{M} \frac{r_i - l_i}{r_i} \leq 1
\]

Proof of Sufficiency. We construct an instantaneous code with these code word lengths. Let there be

\(M_j \) code words of length \(j \) for \(j = 1, 2, \ldots, l^*_k = \max l_i \).

Then

\[
\sum_{i=1}^{M} \frac{r_i - l_i}{r_i} = \sum_{j=1}^{l^*_k} m_j \frac{r - l}{r}
\]

Assume that

\[
\sum_{i=1}^{M} \frac{r_i - l_i}{r_i} = \sum_{j=1}^{l^*_k} m_j \frac{r - l}{r} \leq 1.
\]

Then

\[
\sum_{j=1}^{l^*_k} m_j r_i^{l_i-1} = r^{l^*_k}
\]

or

\[
m_k^* + m_{k-1}^* r + m_{k-2}^* r^2 + \ldots + m_1^* r^{l_1-1} \leq r^{l^*_k}
\]

But since \(m_k^* \geq 0 \) we then have

\[
0 \leq m_k^* \leq r^{l^*_k} - m_1^* r - m_2^* r^2 \ldots - m_{k-1}^* r
\]
But dividing by \(r \) and noting that \(m_{q-1} \geq 0 \) we have

\[
0 \leq m_q \leq r^{q-1} - m_{q-1} r^{q-2} - \ldots - m_{q-2} r^{q-3}
\]

Continuing we get

\[
0 \leq m_3 \leq r^3 - m_1 r^2 - m_2 r \\
0 \leq m_2 \leq r^2 - m_2 r \\
m_1 \geq r
\]

Note that if \(\sum_{i=1}^{m} r^{-i} \leq 1 \), then the \(m \) satisfy the above equations. Note that \(m_1 \leq r \). If \(m_1 < r \) we have \((r-m_1) \) unused prefixes to form code words of length 1, for which the code words of length 1 are not prefixes. But \(m_2 \leq r^2 - m_2 r \). If \(m_2 < r^2 - m_2 r \) there are \((r^2 - m_2 r - m_2) \) code words of length 3 which satisfy the prefix condition. Etc.

Proof of necessity: Follows from McMillan inequality,
McMillan Inequality

A NECESSARY AND SUFFICIENT CONDITION FOR THE EXISTENCE OF AN U.O.D. CODE WITH M CODE WORDS OF LENGTH \(l_1, l_2, \ldots, l_M \) WHERE THE CODE SYMBOLS TAKE ON "\(n \)" DIFFERENT VALUES IS

\[
\sum_{i=1}^{M} x^i \leq 1
\]

SKETCH OF PROOF OF NECESSITY

1. Assume \(\sum_{i=1}^{M} x^{-l_i} > 1 \) and a U.O.D. code exists

2. If \(\left(\sum_{i=1}^{M} x^{-l_i} > 1 \right) \), then \(\left[\sum_{i=1}^{M} x^{-l_i} \right]^N \geq e^N \)

3. \(\left(\sum_{i=1}^{M} x^{-l_i} \right)^N = \sum_{k=m}^{m^\#} N_k x^{-k} \) \(\text{where} \ N_k = \# \text{of strings of } N \text{ code words that are all of length exactly } \ k \)

4. If the code is U.O.D. \(N_k \leq 2^k \). But then for a U.O.D. code

\[
\sum_{k=m}^{m^\#} N_k x^{-k} \leq \sum_{k=m}^{m^\#} 1 = M 2^k - N + 1
\]

which grows linearly with \(N \), not exponentially with \(N \).

Q.E.D.
Lower Bound for \bar{L} for a U.D. code

$\bar{L} \geq H_n(S)$ where \bar{L} = average length of U.D. code and $n = \#$ of symbols in code alphabet. $\bar{L} = H_n(S)$ if $\rho_i = n^{-d_i}$.

Proof: Let $\rho'_i = \frac{n^{-d_i}}{\sum_{j=1}^{M} n^{-d_j}}$. Note $\rho'_i > 0$ and $\sum_{i=1}^{M} \rho'_i = 1$.

From before

$H_n(S) = \sum_{i=1}^{M} \rho_i \log_2 \frac{1}{\rho_i} \leq \sum_{i=1}^{M} \rho_i \log_2 \rho_i$.

Then

$H_n(S) \leq \sum_{i=1}^{M} \rho_i d_i + \sum_{i=1}^{M} \rho_i \log_2 \left(\sum_{j=1}^{M} n^{-d_j} \right)$.

But for a U.D. code $\sum_{j=1}^{M} n^{-d_j} \leq 1$ so $\log_2 \left(\sum_{j=1}^{M} n^{-d_j} \right) = 0$.

$\therefore H_n(S) \leq \bar{L}$

Equality occurs if $\sum_{j=1}^{M} n^{-d_j} = 1$ and $\rho_i = \rho'_i$.

But both of these conditions hold if $\rho_i = n^{-d_i}, \forall i$ an integer.
HUFFMAN CODE AND ENTROPY

A U.D. coding scheme exists for a source with probabilities \(P_1, P_2, \ldots, P_m \) with average length \(L \) and \(m \) code symbols such that

\[
H_2(S) \leq L < H_2(S) + 1
\]

Proof

Choose \(\ell_a \) = the unique integer in the range

\[
\log_2 \frac{1}{P_a} \leq \ell_a < \log_2 \frac{1}{P_a} + 1 \quad \text{i.e.,} \quad \ell_a = \lceil \log_2 \frac{1}{P_a} \rceil
\]

Then

\[
\sum_{a=1}^{m} r_a - \ell_a \leq \sum_{a=1}^{m} P_a = 1 \quad \text{so a U.D. code exists with these lengths,}
\]

\[
\sum_{a=1}^{m} P_a \log_2 \frac{1}{P_a} \leq \sum_{a=1}^{m} P_a \ell_a < \sum_{a=1}^{m} P_a \log_2 \frac{1}{P_a} + \sum_{a=1}^{m} P_a
\]

\[H_2(S) \leq L < H_2(S) + 1 \quad \text{Q.E.D.}
\]

Then for an i.i.d. source, \(S \), a Huffman code exists with code alphabet \(S \# \# \) for the \(N \)th extension of this source such that

\[
H_2(S^N) \leq \frac{L_m}{m} < H_2(S^N) + 1
\]

Proof From Theorem above, a U.D. code exists for the \(N \)th extension of the source such that

\[
H_2(S^N) \leq L_m < H_2(S^N) + 1
\]

But \(H_2(S^N) = m H_2(S) \) and The Huffman code is at least as good as the U.D. code Q.E.D.
EXAMPLES of Codes with $H_a(2) < I < H_a(2) + 1$

EX 1

$r = 2$

<table>
<thead>
<tr>
<th>Prob</th>
<th>$\log_2 \frac{1}{p_a}$</th>
<th>$L_a = \lceil \log_2 \frac{1}{p_a} \rceil$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.9</td>
<td>0.152 1</td>
</tr>
<tr>
<td>B</td>
<td>0.09</td>
<td>3.47 4</td>
</tr>
<tr>
<td>C</td>
<td>0.01</td>
<td>6.67 7</td>
</tr>
</tbody>
</table>

$H_a(2) = 0.516$

Note that $H_a(2) < I < H_a(2) + 1$

$0.516 < 1.33 < 1.516$

Better Code (Actually Huffman Code)

A	0
B	10
C	11

$\bar{L} = 1.1$

EX 2

$r = 2$

<table>
<thead>
<tr>
<th>Prob</th>
<th>$\log_2 \frac{1}{p_a}$</th>
<th>$L_a = \lceil \log_2 \frac{1}{p_a} \rceil$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.19</td>
<td>2.396 3</td>
</tr>
<tr>
<td>B</td>
<td>0.19</td>
<td>2.396 3</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>2.396 3</td>
</tr>
<tr>
<td>D</td>
<td>0.19</td>
<td>2.396 3</td>
</tr>
<tr>
<td>E</td>
<td>0.19</td>
<td>4.322 5</td>
</tr>
<tr>
<td>F</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

$H_a(2) = 2.492$

Note

Huffman Code

A	00
B	01
C	100
D	101
E	110
F	111

$\bar{L} = 2.62$
Ex 3 \(n = 3 \)

<table>
<thead>
<tr>
<th>Prob</th>
<th>(\log_3 \frac{1}{p_i})</th>
<th>(L_i = \sum \log_3 \frac{1}{p_i})</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.19</td>
<td>1.51</td>
</tr>
<tr>
<td>B</td>
<td>0.19</td>
<td>1.51</td>
</tr>
<tr>
<td>C</td>
<td>0.19</td>
<td>1.51</td>
</tr>
<tr>
<td>D</td>
<td>0.19</td>
<td>1.51</td>
</tr>
<tr>
<td>E</td>
<td>0.19</td>
<td>1.51</td>
</tr>
<tr>
<td>F</td>
<td>0.05</td>
<td>2.78</td>
</tr>
</tbody>
</table>

\[H_3(3) = 1.57 \]

Huffman Code

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
</tr>
<tr>
<td>C</td>
<td>11</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
</tr>
<tr>
<td>E</td>
<td>20</td>
</tr>
<tr>
<td>F</td>
<td>21</td>
</tr>
</tbody>
</table>

\[L = 1.81 \]
Properties of an Optimal (compact) Binary Code

We only need to consider instantaneous codes!!

1. If $P_i < P_j$, then $l_i > l_j$

Proof: Otherwise switching code words will reduce I

2. There is no single code word of length l_i's max l_i

Proof: If there were shorter it by one digit, it will still not be a prefix of any other code word and will shorten I.

3. Of the code words of length l_i, they occur in pairs in which the code words in each pair agree in all but the last digit.

Proof: If not, shorten the code word P_i which is not the case by one digit and it will not be the prefix of any other code word. This will shorten I.
Proof of Optimality of Binary Huffman Codes.

Theorem:

Consider a code C_j of length j, where $j > 1$. Suppose there exists a code C_{j-1} that is shorter than C_j. Let L_{j-1} be the average length of C_{j-1} and L_j be the average length of C_j.

Case 1:
If $L_{j-1} < L_j$, then C_j cannot be optimal, as there exists a shorter code C_{j-1}.

Case 2:
If $L_{j-1} > L_j$, then C_j cannot be optimal, as there exists a longer code C_{j-1} that is still shorter than C_j.

Therefore, for C_j to be optimal, $L_{j-1} = L_j$.

Proof:

Suppose there were a better code at $(j-1)$. Call it C_{j-1}'. Its average length $L_{j-1}' < L_{j-1}$. But the two code words with probabilities $p_{a,0}$ and $p_{a,1}$ are identical except for the last digit. Form a new code C_j' at j that has the identical prefix as the code word for $p_{a,0}$. This code will have average length $L_j' = L_{j-1}' + (p_{a,0} + p_{a,1})$ so that $L_{j-1}' < L_{j-1}$. But this can't be the case if C_j was optimal. Q.E.D.