Kolmogorov - Axioms On Probability

\[P: \mathbb{F} \rightarrow \mathbb{R} \] satisfies:

1. \(P(A) \geq 0 \) for every \(A \in \mathbb{F} \)

2. \(P(\emptyset) = 1 \)

3. (Countable Additivity) If \(A_1, A_2, \ldots \) are disjoint (i.e., \(A_i \cap A_j = \emptyset \) for all \(i \neq j \))

\[P(\bigcup_i A_i) = \sum_i P(A_i) \]

Law Of Total Probability

1. \(P(A^c) = 1 - P(A) \)

Examples:

1. Two Coin Flips:
 \[\mathcal{F} = \{ H, T \} \]
 \[\mathbb{F} = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]
 \[P(H) = \frac{1}{2}, \quad P(T) = \frac{1}{2} \]

2. Two Coin Flips:
 \[\mathcal{F} = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]
 \[\mathbb{F} = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]
 \[P(H) = \frac{1}{2}, \quad P(T) = \frac{1}{2} \]

3. Four Coin Flips
 \[\mathcal{F} = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]
 \[\mathbb{F} = \{ \emptyset, \{ H \}, \{ T \}, \{ H, T \} \} \]
 \[P(H) = \frac{1}{2}, \quad P(T) = \frac{1}{2} \]

4. Roll A Fair Die
 \[\mathcal{F} = \{ 1, 2, 3, 4, 5, 6 \} \]
 \[\mathbb{F} = \{ \emptyset, \{ 1 \}, \{ 2 \}, \{ 3 \}, \{ 4 \}, \{ 5 \}, \{ 6 \} \} \]

5. Roll A Fair Die
\[C = \{ 1, 2, 3, 4, 5, 6 \} \]
\[P(C) = 2^6 \]
\[P(\emptyset) = 0, \quad P(C) = P(\emptyset) + P(C) + \ldots + P(\emptyset) + \ldots \]
\[P(\{1, 2\}) = \frac{P(\{1, 2\})}{\ldots + P(\{1, 2\})} = \frac{1}{2} \]
\[\frac{P(\{1, 2\})}{\ldots + \frac{P(\{5, 6\})}{2}} \]
\[P(\{5\}) = 1 \]

Exercise

Known From Generation

1. \(\mathcal{C} = \{0, 1\} \)
2. \(P = \{a, b\} \)
3. \(P(a) = a, \quad P(\{a\}) \quad \forall a \in \{0, 1\} \)

If \(\mathcal{C} \) is Continuous (e.g., is the Interval on the Real Line) \(\forall \mathcal{C} \) Rules, Then \(P(a) \) \(\forall a \in \mathcal{C} \) Determines \(\forall A \) for Every \(A \in \mathcal{C} \)

For Instance

\[P(\{a\}) = \int_{a}^{b} P \left(\frac{\{a\}}{\mathcal{C}} \right) \]

A Similar Conclusion Can Be Made w/ \(P(\{a\}) \) \(\forall a \in \mathcal{C} \)

For Instance

\[P(\{a\}) = \int_{a}^{b} P \left(\frac{\{a\}}{\mathcal{C}} \right) \]

Conditional Probability

If \(B \) be an Event \(\forall P(B) \neq 0 \), Then \(\frac{P(\{A\})}{P(B)} \)

\[= \frac{\sum P(\{A\} \cap B)}{P(B)} \]

Note that \(P(\{A\}) \) is a probability measure over \(\mathcal{C} \) to meet the 3 Axioms (1) \(P(\{A\}) \neq 0 \) \(\forall A \)

2. \(P(\{A\} \cap B) = P(\{A\}) \cap P(B) \)

\[= \frac{\sum P(\{A\} \cap B)}{P(B)} = \frac{P(\{A\} \cap B)}{P(B)} \]

Chain Rule \(\text{- True Even When} \ P(B) \) or \(P(A) = 0 \)

\[P(\{A\} \cap B) = P(\{A\}) \cap P(B) \]

\(\text{- Can Be Generalized To More Events} \)

\[P(\{A, A, A\}) = P(\{A\}) \cap P(\{A\}) \cap P(\{A\}) \]

\[= P(\{A\} \neq 0, \text{Then} \ P(A) \neq 0, \text{Then} \]

Axioms

1. \(\text{Axiom} \text{ of} \text{Probability} \)

\[P(\{A\}) = P(\{A\}) \cap P(\{A\}) \]

\[= \frac{P(\{A\} \cap B)}{P(B)} = \frac{P(\{A\} \cap B)}{P(B)} \]

\[= \frac{P(\{A\} \cap B)}{P(B)} = \frac{P(\{A\} \cap B)}{P(B)} \]

Example

1. **Axiom of Probability (Cont.)**

\[P(\{A\}) = \frac{1}{2}, \quad \frac{P(\{A\})}{n} = \frac{1}{2}, \quad \frac{P(\{A\})}{n} = \frac{1}{2} \]

\[\frac{P(\{A\})}{n} = \frac{1}{2}, \quad \frac{P(\{A\})}{n} = \frac{1}{2} \]
\[A = \{(0, 0), (0, 1), (1, 0), (1, 1)\} \]

Let \(A = \{0, 1\} \) be the set of states.
Let \(B = \{0, 1\} \) be the set of actions.

\[\text{Find } P(A) = 0.2 \]
\[P(A) \cap \{0, 1\} = 0.7 \cdot 0.9 + 0.8 \cdot 0.25 \]
\[P(A) = 0.9 \]
\[P(X) = \frac{P(A) \cdot P(Y)}{P(B)} \]

Ex 2: Finite State Machine (3 States)

\[P(A) = \begin{pmatrix} 0.3 & 0.2 & 0.5 \\ 0.2 & 0.3 & 0.4 \\ 0.1 & 0.3 & 0.6 \end{pmatrix} \]

\[\text{Let } A = \{\text{Initial State}, \text{Next State}\} \]

\[A = \{X, Y, Z\} \]

\[\text{Find } P(A) = 0.5 \]
\[P(A) = P(\text{Initial State}, \text{Next State}) = P(X, Y) + P(Y, X) \]
\[P(A) = 0.3 \]
\[P(Y) = \frac{P(A) \cdot P(Y)}{P(B)} = 0.5 \cdot 0.7 + 0.8 \cdot 0.25 = 0.7 + 0.3 \cdot 0.5 \]