Solutions to Homework Set #2

3.9. (a) The operational definition of the capacity cost function is

\[C(B) = \sup \{ R : (R, B) \text{ is achievable} \}. \]

Since the supremum is taken over a bigger set as \(B \) increases, \(C(B) \) is nondecreasing for \(B \geq 0 \).

To prove the concavity, let \(B_1 \) and \(B_2 \) be two cost constraints. Suppose that \(R_1 \) is achievable under \(B_1 \) and \(R_2 \) is achievable under \(B_2 \) i.e. \(R_1 \leq C(B_1) \) and \(R_2 \leq C(B_2) \). Let \(k = |\alpha n|, k' = n - k \) and \(\alpha \in [0,1] \). We can construct a code by using a \((2^{kR_1}, k)\) code for the first \(k \) transmissions and a \((2^{k'R_2}, k')\) code for the rest of \(k' \) transmissions. Hence, the resulting code can achieve rate \(\alpha R_1 + \alpha R_2 \) with cost constraint \(E(b(X)) \leq \alpha B_1 + \alpha B_2 \). Therefore, \(C(B) \) is concave for \(B \geq 0 \).

(b) The information capacity–cost function is defined as

\[C(B) = \max_{p(x):E(b(X)) \leq B} I(X; Y). \]

The monotonicity is trivial. To prove the concavity, let \(B_1 \) and \(B_2 \) be two cost constraints, and let \(p_1(x) \) and \(p_2(x) \) be two probability distributions that attain \(I_{p_1}(X; Y) = C(B_1) \) and \(I_{p_2}(X; Y) = C(B_2) \), respectively. Let \(p(x) = \alpha p_1(x) + \bar{\alpha} p_2(x) \) for \(\alpha \in [0,1] \). Then, \(E_p(b(X)) = \alpha E_{p_1}(b(X)) + \bar{\alpha} E_{p_2}(b(X)) \leq \alpha B_1 + \bar{\alpha} B_2 \), which implies that

\[I_p(X; Y) \leq C(B). \]

Now by the concavity of the mutual information \(I(X; Y) \) in \(p(x) \) for fixed \(p(y|x) \), we have

\[I_p(X; Y) \geq \alpha I_{p_1}(X; Y) + \bar{\alpha} I_{p_2}(X; Y) = \alpha C(B_1) + \bar{\alpha} C(B_2). \]

Combining the two bounds on \(I_p(X; Y) \) establishes the concavity of \(C(B) \).

The continuity of \(C(B) \) on \((0, \infty)\) follows immediately from the concavity. For the continuity at \(B = 0 \), observe that the set \(\{(R, B) : R \leq I(X; Y), B \geq E(b(X)) \text{ for some } p(x) \} \) is closed.

3.12. It follows immediately from the operational definition of capacity. Alternatively, note that the output becomes \(Y' = agX + aZ \), where \(a \neq 0 \). Thus,

\[I(X; Y') = I(X; agX + aZ) \]

\[= h(agX + aZ) - h(aZ) \]

\[= \frac{1}{2} \log(2\pi e(a^2 g^2 P)) - \frac{1}{2} \log(2\pi e(a^2)) \]

\[= \frac{1}{2} \log(g^2 P). \]

3.14. (a) Consider the random codebook generation as in the standard achievability proof for the DMC. For the decoding, let \(\mathcal{A} = \{ m : (x^n(m), y^n) \in \mathcal{T}_e(n) \} \) and declare \(\mathcal{L} = \mathcal{A} \) if \(|\mathcal{A}| \leq 2^nL \) (and take an arbitrary \(\mathcal{L} \) otherwise). Suppose \(M = 1 \). Then the probability of error is bounded as

\[P_e(n) = P\{ M \notin \mathcal{L}(Y^n) | M = 1 \} \]

\[\leq P\{ (X^n(1), Y^n) \notin \mathcal{T}_e(n) | M = 1 \} + P\{ |\mathcal{A}| > 2^nL | M = 1 \}. \]
By the LLN, the first term tends to zero as \(n \to \infty \). By the Markov inequality and the joint typicality lemma, the second term is bounded as

\[
P\{|A| > 2^{nL}|M = 1\} \leq \frac{\mathbb{E}(|A||M = 1)}{2^{nL}L}
\leq \frac{1}{2^{nL}} \left(1 + \sum_{m=2}^{2^{nR}} P\{(X^n(m), Y^n) \in T^{(n)}_\epsilon\}\right)
\leq 2^{-nL} \log(1 + 2^{nR}L - I(X; Y) + \delta(\epsilon)),
\]

which tends to zero as \(n \to \infty \) if \(R < L + I(X; Y) - \delta(\epsilon) \).

Alternatively, we can partition \(2^{nR} \) messages together into \(2^{n(R-L)} \) equal-size groups and map each group into a single codeword. The encoder sends the group index \(k \in [1 : 2^{n(R-L)}] \) by transmitting \(x^n(k) \) for \(m \in [(k-1)2^{nL} + 1 : k2^{nL}] \). The decoder finds the correct group index \(\hat{k} \) and simply forms the list of messages associated with \(\hat{k} \), i.e., \(L = [(\hat{k} - 1)2^{nL} + 1 : \hat{k}2^{nL}] \).

Finally, by the channel coding theorem for the standard DMC, the group index can be recovered if \(R - L < C \), which completes the proof of achievability.

(b) Note that we have a new definition of error in this problem. An error occurs if \(M \notin L(Y^n) \).

Define an error random variable \(E \) which takes value 1 if there is an error, and 0 otherwise. Then,

\[
H(M|Y^n) = H(M|Y^n) + H(E|M, Y^n)
= H(E|Y^n) + H(M|E, Y^n)
\leq H(E) + H(M|E, Y^n)
\leq 1 + P\{E = 0\}H(M|E = 0, Y^n) + P\{E = 1\}H(M|E = 1, Y^n)
\leq 1 + (1 - P_e^n) \log 2^{nL} + P_e^n \log(2^{nR} - 1)
\leq 1 + nL + nR \epsilon_e^n = nL + n \epsilon_e^n,
\]

This implies that given any sequence of \((2^{nR}, 2^{nL}, n) \) codes with \(P_e^n \to 0 \) as \(n \to \infty \), we have

\[
nR = H(M)
\leq I(M; Y^n) + H(M|Y^n)
\leq I(M; Y^n) + nL + n \epsilon_e^n
\leq nC + nL + n \epsilon_e^n,
\]

where (a) follows by the proof of the converse for DMC. Therefore, \(R \leq C + L \).

10.1. (a) The optimal rate is \(R^* = H(X|Y) \).

(b) Since both the encoder and the decoder know the side information, the encoder only needs to describe the sequences \(X^n \) such that \(X^n \in T^{(n)}_\epsilon(X|y^n) \) for each observed \(y^n \) sequence, which requires \(n(H(X|Y) + \delta(\epsilon)) \) bits. An error occurs only if \((X^n, Y^n) \notin T^{(n)}_\epsilon(X, Y) \). By the LLN, the probability of this event tends to zero as \(n \to \infty \).
(c) Consider

\[nR \geq H(M) \]
\[\geq I(M; X^n|Y^n) \]
\[= H(X^n|Y^n) - H(X^n|M, Y^n) \]
\[\geq \sum_{i=1}^{n} H(X_i|Y^n, X^{i-1}) - n\epsilon_n \]
\[= \sum_{i=1}^{n} H(X_i|Y_i) - n\epsilon_n \]
\[= nH(X|Y) - n\epsilon_n, \]

where (a) follows by Fano’s inequality.

(d) For distributed lossless source coding, suppose that a genie provides side information \(X_2^n \) to both encoder 1 and the decoder. From part (c), the rate required in this setting is \(R_1 \geq H(X_1|X_2) \), which establishes an upper bound on \(R_1 \) for the case without genie. Similarly, by introducing a genie providing side information \(X_1^n \) to both encoder 2 and the decoder, we have \(R_2 \geq H(X_2|X_1) \).

10.6. (a) By identifying \(X_1 = (X, Y) \) and \(X_2 = Y \) in the distributed lossless source coding setting, the optimal rate region is the set of rate pairs \((R_1, R_2)\) such that

\[R_1 \geq H(X, Y|Y), \]
\[R_2 \geq H(Y|X, Y), \]
\[R_1 + R_2 \geq H(X, Y), \]

or equivalently,

\[R_1 \geq H(X|Y), \]
\[R_1 + R_2 \geq H(X, Y). \]

(b) The optimal rate region is the set of rate pairs \((R_1, R_2)\) such that

\[R_1 + R_2 \geq H(Y). \]

This can be achieved by ignoring \(X^n \) at encoder 1. For the converse, consider

\[n(R_1 + R_2) \geq H(M_1, M_2) \]
\[\geq I(Y^n; M_1, M_2) \]
\[\geq H(Y^n) - n\epsilon_n \]
\[= nH(Y) - n\epsilon_n, \]

where (a) follows by Fano’s inequality.

10.8. The optimal rate is

\[R^* = \max\{H(X|Y_1), H(X|Y_2)\}. \]

This can be achieved using Slepian–Wolf coding (recall that random binning does not depend on the
side information or its distribution). For the converse, consider

\[nR \geq H(M) \]
\[\geq I(X^n; M|Y^n) \]
\[\geq H(X^n|Y^n) - n\epsilon_n \]
\[\geq \sum_{i=1}^{n} H(X_i|Y_{ji}) - n\epsilon_n \]
\[= nH(X|Y_j) - n\epsilon_n \]

for \(j = 1, 2 \).